Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(9): 2095-2107.e8, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39153479

RESUMO

Although the Bacille-Calmette-Guérin (BCG) vaccine is used to prevent tuberculosis, it also offers protection against a diverse range of non-mycobacterial infections. However, the underlying protective mechanisms in humans are not yet fully understood. Here, we surveyed at single-cell resolution the gene expression and chromatin landscape of human bone marrow, aspirated before and 90 days after BCG vaccination or placebo. We showed that BCG alters both the gene expression and epigenetic profiles of human hematopoietic stem and progenitor cells (HSPCs). Changes in gene expression occurred primarily within uncommitted stem cells. By contrast, changes in chromatin accessibility were most prevalent within differentiated progenitor cells at sites influenced by Kruppel-like factor (KLF) and early growth response (EGR) transcription factors and were highly correlated (r > 0.8) with the interleukin (IL)-1ß secretion capacity of paired peripheral blood mononuclear cells (PBMCs). Our findings shed light on BCG vaccination's profound and lasting effects on HSPCs and its influence on innate immune responses and trained immunity.


Assuntos
Vacina BCG , Epigênese Genética , Imunidade Inata , Vacinação , Humanos , Vacina BCG/imunologia , Epigênese Genética/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Interleucina-1beta/metabolismo , Medula Óssea/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Adulto , Leucócitos Mononucleares/imunologia , Cromatina/metabolismo , Feminino , Masculino , Diferenciação Celular/imunologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/imunologia
2.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38077046

RESUMO

While the Bacille-Calmette-Guérin (BCG) vaccine is used to prevent tuberculosis, it also offers protection against a diverse range of non-mycobacterial infections. However, the underlying protective mechanisms in humans are not yet fully understood. Here, we surveyed at single-cell resolution the gene expression and chromatin landscape of human bone marrow, aspirated before and 90 days after BCG vaccination or placebo administration. We show that BCG vaccination significantly alters both the gene expression and epigenetic profiles of human hematopoietic stem and progenitor cells (HSPCs). Changes in gene expression occur primarily on the most uncommitted stem cells and are reflective of a persistent myeloid bias. In contrast, BCG-induced changes in chromatin accessibility are most prevalent within differentiated progenitor cells at sites influenced by Kruppel-like factor (KLF)/SP and EGR transcription factors (TFs). These TFs are also activated in the most uncommitted stem cells, indicating that activated TFs, which drive persistent changes in HSC gene expression, likely also drive chromatin dynamics appearing within downstream progenitor cells. This perspective contests the prevailing notion that epigenetic modifications linked to innate immune memory transfer directly from stem cells to their differentiated derivatives. Finally, we show that alterations in gene expression and chromatin accessibility in HSPCs due to BCG vaccination were highly correlated (r>0.8) with the IL-1ß secretion capacity of paired PBMCs upon secondary immune challenge. Overall, our findings shed light on BCG vaccination's profound and lasting effects on HSPCs and its influence on innate immune responses.

3.
Infect Immun ; 91(10): e0020123, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37754680

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) play a vital role in the host response to infection through the rapid and robust production of mature immune cells. These HSPC responses can be influenced, directly and indirectly, by pathogens as well. Infection with Mycobacterium tuberculosis (Mtb) can drive lymphopoiesis through modulation of type I interferon (IFN) signaling. We have previously found that the presence of a drug resistance (DR)-conferring mutation in Mtb drives altered host-pathogen interactions and heightened type I IFN production in vitro. But the impacts of this DR mutation on in vivo host responses to Mtb infection, particularly the hematopoietic compartment, remain unexplored. Using a mouse model, we show that, while drug-sensitive Mtb infection induces expansion of HSPC subsets and a skew toward lymphopoiesis, DR Mtb infection fails to induce an expansion of these subsets and an accumulation of mature granulocytes in the bone marrow. Using single-cell RNA sequencing, we show that the HSCs from DR Mtb-infected mice fail to upregulate pathways related to cytokine signaling across all profiled HSC subsets. Collectively, our studies report a novel finding of a chronic infection that fails to induce a potent hematopoietic response that can be further investigated to understand pathogen-host interaction at the level of hematopoiesis.


Assuntos
Infecções Bacterianas , Mycobacterium tuberculosis , Tuberculose , Humanos , Medula Óssea , Células-Tronco Hematopoéticas , Mycobacterium tuberculosis/fisiologia , Hematopoese/fisiologia , Infecções Bacterianas/metabolismo , Células da Medula Óssea
5.
Front Microbiol ; 13: 956602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267176

RESUMO

The establishment of Mycobacterium tuberculosis (Mtb) long-term infection in vivo depends on several factors, one of which is the availability of key nutrients such as iron (Fe). The relation between Fe deprivation inside and outside the granuloma, and the capacity of Mtb to accumulate lipids and persist in the absence of growth is not well understood. In this context, current knowledge of how Mtb modifies its lipid composition in response to growth arrest, depending on iron availability, is scarce. To shed light on these matters, in this work we compare genome-wide transcriptomic and lipidomic profiles of Mtb at exponential and stationary growth phases using cultures with glycerol as a carbon source, in the presence or absence of iron. As a result, we found that transcriptomic responses to growth arrest, considered as the transition from exponential to stationary phase, are iron dependent for as many as 714 genes (iron-growth interaction contrast, FDR <0.05), and that, in a majority of these genes, iron deprivation enhances the magnitude of the transcriptional responses to growth arrest in either direction. On the one hand, genes whose upregulation upon growth arrest is enhanced by iron deprivation were enriched in functional terms related to homeostasis of ion metals, and responses to several stressful cues considered cardinal features of the intracellular environment. On the other hand, genes showing negative responses to growth arrest that are stronger in iron-poor medium were enriched in energy production processes (TCA cycle, NADH dehydrogenation and cellular respiration), and key controllers of ribosomal activity shut-down, such as the T/A system mazE6/F6. Despite of these findings, a main component of the cell envelope, lipid phthiocerol dimycocerosate (PDIM), was not detected in the stationary phase regardless of iron availability, suggesting that lipid changes during Mtb adaptation to non-dividing phenotypes appear to be iron-independent. Taken together, our results indicate that environmental iron levels act as a key modulator of the intensity of the transcriptional adaptations that take place in the bacterium upon its transition between dividing and dormant-like phenotypes in vitro.

6.
Commun Med (Lond) ; 2: 77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784445

RESUMO

Background: The ongoing COVID-19 pandemic has greatly disrupted our everyday life, forcing the adoption of non-pharmaceutical interventions in many countries and putting public health services and healthcare systems worldwide under stress. These circumstances are leading to unintended effects such as the increase in the burden of other diseases. Methods: Here, using a data-driven epidemiological model for tuberculosis (TB) spreading, we describe the expected rise in TB incidence and mortality if COVID-associated changes in TB notification are sustained and attributable entirely to disrupted diagnosis and treatment adherence. Results: Our calculations show that the reduction in diagnosis of new TB cases due to the COVID-19 pandemic could result in 228k (CI 187-276) excess deaths in India, 111k (CI 93-134) in Indonesia, 27k (CI 21-33) in Pakistan, and 12k (CI 9-18) in Kenya. Conclusions: We show that it is possible to reverse these excess deaths by increasing the pre-covid diagnosis capabilities from 15 to 50% for 2 to 4 years. This would prevent almost all TB-related excess mortality that could be caused by the COVID-19 pandemic if no additional preventative measures are introduced. Our work therefore provides guidelines for mitigating the impact of COVID-19 on tuberculosis epidemic in the years to come.


The COVID-19 pandemic has disrupted everyday life and put public health services and healthcare systems worldwide under stress. This has compromised the ability to control other diseases such as Malaria, Cancer and Tuberculosis. In this work we predict the rise in Tuberculosis occurrence and mortality when healthcare systems are impacted and diagnosis capabilities blocked in 4 countries where TB is prevalent. Our calculations show that an increase in new TB cases due to the COVID-19 pandemic could result in almost 400,000 additional deaths from TB in India, Indonesia, Pakistan and Kenya. We also show that increased diagnosis capabilities after the pandemic could reduce the additional deaths from TB resulting from the COVID-19 pandemic impact.

7.
Front Immunol ; 13: 1044592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776396

RESUMO

Pulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of Mycobacterium tuberculosis (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra). Importantly, healthy human AM infected with H37Ra equally demonstrated diminished energetics, recapitulating our observation in the murine model system. However, the results from seahorse showed that the shift towards glycolysis in both AM and BMDM was inhibited by H37Rv. We further demonstrated that pharmacological (e.g. metformin or the iron chelator desferrioxamine) reprogramming of AM towards glycolysis reduced necrosis and enhanced AM capacity to control H37Rv growth. Together, our results indicate that the unique bioenergetics of AM renders these cells a perfect target for Mtb survival and that metabolic reprogramming may be a viable host targeted therapy against TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Macrófagos Alveolares/metabolismo , Tuberculose/microbiologia , Macrófagos/microbiologia , Necrose/metabolismo
8.
Cell ; 183(3): 752-770.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125891

RESUMO

A greater understanding of hematopoietic stem cell (HSC) regulation is required for dissecting protective versus detrimental immunity to pathogens that cause chronic infections such as Mycobacterium tuberculosis (Mtb). We have shown that systemic administration of Bacille Calmette-Guérin (BCG) or ß-glucan reprograms HSCs in the bone marrow (BM) via a type II interferon (IFN-II) or interleukin-1 (IL1) response, respectively, which confers protective trained immunity against Mtb. Here, we demonstrate that, unlike BCG or ß-glucan, Mtb reprograms HSCs via an IFN-I response that suppresses myelopoiesis and impairs development of protective trained immunity to Mtb. Mechanistically, IFN-I signaling dysregulates iron metabolism, depolarizes mitochondrial membrane potential, and induces cell death specifically in myeloid progenitors. Additionally, activation of the IFN-I/iron axis in HSCs impairs trained immunity to Mtb infection. These results identify an unanticipated immune evasion strategy of Mtb in the BM that controls the magnitude and intrinsic anti-microbial capacity of innate immunity to infection.


Assuntos
Células-Tronco Hematopoéticas/microbiologia , Imunidade , Mycobacterium tuberculosis/fisiologia , Mielopoese , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células , Suscetibilidade a Doenças , Homeostase , Interferon Tipo I/metabolismo , Ferro/metabolismo , Cinética , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Necrose , Transdução de Sinais , Transcrição Gênica , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia
9.
Cell ; 172(1-2): 176-190.e19, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328912

RESUMO

The dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis. Importantly, BCG-educated HSCs generate epigenetically modified macrophages that provide significantly better protection against virulent M. tuberculosis infection than naïve macrophages. By using parabiotic and chimeric mice, as well as adoptive transfer approaches, we demonstrate that training of the monocyte/macrophage lineage via BCG-induced HSC reprogramming is sustainable in vivo. Our results indicate that targeting the HSC compartment provides a novel approach for vaccine development.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Memória Imunológica , Mycobacterium bovis/imunologia , Transcriptoma , Animais , Linhagem Celular , Células Cultivadas , Epigênese Genética , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA