Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166660, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764206

RESUMO

The cytoplasmic protein tumor progression locus 2 (TPL2), also known as cancer Osaka thyroid (Cot), or MAP3K8, is thought to have a significant role in a variety of cancers and illnesses and it is a key component in the activation pathway for the expression of inflammatory mediators. Despite the tight connection between inflammation and TPL2, its function has not been extensively studied in chronic liver disease (CLD), a major cause of morbidity and mortality worldwide. Here, we analyze more in detail the significance of TPL2 in CLD to shed light on the pathological and molecular transduction pattern of TPL2 during the progression of CLD. This might result in important advancements and enable progress in the diagnosis and treatment of CLD.


Assuntos
Hepatopatias , Neoplasias da Glândula Tireoide , Humanos , Inflamação , MAP Quinase Quinase Quinases
2.
Gastroenterol Hepatol ; 46(4): 322-328, 2023 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35688395

RESUMO

Unfortunately, there is a gap of understanding in the pathophysiology of chronic liver disease due to the lack of experimental models that exactly mimic the human disease. Additionally, the diagnosis of patients is very poor due to the lack of biomarkers than can detect the disease in early stages. Thus, it is of utmost interest the generation of a multidisciplinary consortium from different countries with a direct translation. The present reports the meeting of the 2021 Iberoamerican Consortium for the study of liver Cirrhosis, held online, in October 2021. The meeting, was focused on the recent advancements in the field of chronic liver disease and cirrhosis with a specific focus on cell pathobiology and liver regeneration, molecular and cellular targets involved in non-alcoholic hepatic steatohepatitis, alcoholic liver disease (ALD), both ALD and western diet, and end-stage liver cirrhosis and hepatocellular carcinoma. In addition, the meeting highlighted recent advances in targeted novel technology (-omics) and opening therapeutic avenues in this field of research.


Assuntos
Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Cirrose Hepática/etiologia , Hepatopatias Alcoólicas/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia
3.
J Hepatol ; 73(3): 616-627, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32220583

RESUMO

BACKGROUND & AIMS: Autophagy maintains cellular homeostasis and plays a critical role in the development of non-alcoholic fatty liver and steatohepatitis. The pseudokinase mixed lineage kinase domain-like (MLKL) is a key downstream effector of receptor interacting protein kinase 3 (RIP3) in the necroptotic pathway of programmed cell death. However, recent data reveal that MLKL also regulates autophagy. Herein, we tested the hypothesis that MLKL contributes to the progression of Western diet-induced liver injury in mice by regulating autophagy. METHODS: Rip3+/+, Rip3-/-, Mlkl+/+ and Mlkl-/- mice were fed a Western diet (FFC diet, high in fat, fructose and cholesterol) or chow for 12 weeks. AML12 and primary mouse hepatocytes were exposed to palmitic acid (PA). RESULTS: The FFC diet increased expression, phosphorylation and oligomerization of MLKL in the liver. Mlkl, but not Rip3, deficiency protected mice from FFC diet-induced liver injury. The FFC diet also induced accumulation of p62 and LC3-II, as well as markers of endoplasmic reticulum stress, in Mlkl+/+ but not Mlkl-/- mice. Mlkl deficiency in mice also prevented the inhibition of autophagy by a protease inhibitor, leupeptin. Using an mRFP-GFP-LC3 reporter in cultured hepatocytes revealed that PA blocked the fusion of autophagosomes with lysosomes. PA triggered MLKL expression and translocation, first to autophagosomes and then to the plasma membrane, independently of Rip3. Mlkl, but not Rip3, deficiency prevented inhibition of autophagy in PA-treated hepatocytes. Overexpression of Mlkl blocked autophagy independently of PA. Additionally, pharmacologic inhibition of autophagy induced MLKL expression and translocation to the plasma membrane in hepatocytes. CONCLUSIONS: Taken together, these data indicate that MLKL-dependent, but RIP3-independent, signaling contributes to FFC diet-induced liver injury by inhibiting autophagy. LAY SUMMARY: Autophagy is a regulated process that maintains cellular homeostasis. Impaired autophagy contributes to cell injury and death, thus playing a critical role in the pathogenesis of a number of diseases, including non-alcohol-associated fatty liver and steatohepatitis. Herein, we show that Mlkl-dependent, but Rip3-independent, signaling contributed to diet-induced liver injury and inflammatory responses by inhibiting autophagy. These data identify a novel co-regulatory mechanism between necroptotic and autophagic signaling pathways in non-alcoholic fatty liver disease.


Assuntos
Autofagia/genética , Dieta Ocidental/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Transformada , Membrana Celular/metabolismo , Modelos Animais de Doenças , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos
4.
Arterioscler Thromb Vasc Biol ; 37(2): 237-246, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27856455

RESUMO

OBJECTIVE: Map3k8 (Cot/Tpl2) activates the MKK1/2-ERK1/2, MAPK pathway downstream from interleukin-1R, tumor necrosis factor-αR, NOD-2R (nucleotide-binding oligomerization domain-like 2R), adiponectinR, and Toll-like receptors. Map3k8 plays a key role in innate and adaptive immunity and influences inflammatory processes by modulating the functions of different cell types. However, its role in atherogenesis remains unknown. In this study, we analyzed the role of this kinase in this pathology. APPROACH AND RESULTS: We show here that Map3k8 deficiency results in smaller numbers of Ly6ChighCD11clow and Ly6ClowCD11chigh monocytes in ApoE-/- mice fed a high-fat diet (HFD). Map3k8-/-ApoE-/- monocytes displayed high rates of apoptosis and reduced amounts of Nr4a1, a transcription factor known to modulate apoptosis in Ly6ClowCD11chigh monocytes. Map3k8-/-ApoE-/- splenocytes and macrophages showed irregular patterns of cytokine and chemokine expression. Map3k8 deficiency altered cell adhesion and migration in vivo and decreased CCR2 expression, a determinant chemokine receptor for monocyte mobilization, on circulating Ly6ChighCD11clow monocytes. Map3k8-/-ApoE-/- mice fed an HFD showed decreased cellular infiltration in the atherosclerotic plaque, with low lipid content. Lesions had similar size after Map3k8+/+ApoE-/- bone marrow transplant into Map3k8-/-ApoE-/- and Map3k8+/+ApoE-/- mice fed an HFD, whereas smaller plaques were observed after the transplantation of bone marrow lacking both ApoE and Map3k8. CONCLUSIONS: Map3k8 decreases apoptosis of monocytes and enhances CCR2 expression on Ly6ChighCD11clow monocytes of ApoE-/- mice fed an HFD. These findings explain the smaller aortic lesions in ApoE-/- mice with Map3k8-/-ApoE-/- bone marrow cells fed an HFD, supporting further studies of Map3k8 as an antiatherosclerotic target.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Monócitos/metabolismo , Placa Aterosclerótica , Proteínas Proto-Oncogênicas/metabolismo , Animais , Antígenos Ly/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/genética , Apoptose , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Antígeno CD11c/metabolismo , Adesão Celular , Quimiotaxia de Leucócito , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Predisposição Genética para Doença , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Knockout , Monócitos/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores CCR2/metabolismo , Transdução de Sinais , Baço/metabolismo
5.
Hepatology ; 64(5): 1518-1533, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27301788

RESUMO

Multiple pathways of programmed cell death are important in liver homeostasis. Hepatocyte death is associated with progression of nonalcoholic fatty liver disease, and inhibition of apoptosis partially protects against liver injury in response to a high-fat diet (HFD). However, the contribution of necroptosis, a caspase-independent pathway of cell death, to HFD-induced liver injury is not known. Wild-type C57BL/6 and receptor interacting protein (RIP) 3-/- mice were randomized to chow or HFD. HFD-fed C57BL/6 mice increased expression of RIP3, the master regulator of necroptosis, as well as phosphorylated mixed lineage kinase domain-like, an effector of necroptotic cell death, in liver. HFD did not increase phosphorylated mixed lineage kinase domain-like in RIP3-/- mice. HFD increased fasting insulin and glucose, as well as glucose intolerance, in C57BL/6 mice. RIP3-/- mice were glucose-intolerant even on the chow diet; HFD further increased fasting glucose and insulin but not glucose intolerance. HFD also increased hepatic steatosis, plasma alanine aminotransferase activity, inflammation, oxidative stress, and hepatocellular apoptosis in wild-type mice; these responses were exacerbated in RIP3-/- mice. Importantly, increased inflammation and injury were associated with early indicators of fibrosis in RIP3-/- compared to C57BL/6 mice. Culture of AML12 hepatocytes with palmitic acid increased cytotoxicity through apoptosis and necrosis. Inhibition of RIP1 with necrostatin-1 or small interfering RNA knockdown of RIP3 reduced palmitic acid-induced cytotoxicity. CONCLUSION: Absence of RIP3, a key mediator of necroptosis, exacerbated HFD-induced liver injury, associated with increased inflammation and hepatocyte apoptosis, as well as early fibrotic responses; these findings indicate that shifts in the mode of hepatocellular death can influence disease progression and have therapeutic implications because manipulation of hepatocyte cell death pathways is being considered as a target for treatment of nonalcoholic fatty liver disease. (Hepatology 2016;64:1518-1533).


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica/etiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Apoptose , Morte Celular , Hepatócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Distribuição Aleatória
6.
Curr Pathobiol Rep ; 3(4): 243-252, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26858914

RESUMO

Hepatic fibrosis is a dynamic process resulting from excessive deposition of extracellular matrix in the liver; uncontrolled progression of fibrosis can eventually lead to liver cirrhosis and/or hepatocellular carcinoma. The fibrogenic process is complex and modulated by a number of both hepatic and extra-hepatic biological factors. Growing evidence indicates that adipokines, a group of cytokines produced by adipose tissue, impart dynamic functions in liver and are involved in modulation of hepatic fibrosis. In particular, two key adipokines, adiponectin and leptin, directly regulate many biological responses closely associated with development and progression of hepatic fibrosis. Leptin acts as a pro-fibrogenic cytokine, while adiponectin possesses anti-fibrogenic and anti-inflammatory properties. Adiponectin, acting via its cognate receptors, adiponectin receptors 1 and 2, potently suppresses fibrosis and inflammation in liver via multiple mechanisms. This review summarizes recent findings concerning the role of adiponectin in fibrogenic process in liver and addresses the underlying molecular mechanisms in modulation of fibrosis.

7.
J Leukoc Biol ; 95(6): 917-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24532642

RESUMO

Whereas the main function of APN is to enhance insulin activity, it is also involved in modulating the macrophage phenotype. Here, we demonstrate that at physiological concentrations, APN activates Erk1/2 via the IKKß-p105/NF-κΒ1-Cot/tpl2 intracellular signal transduction cassette in macrophages. In peritoneal macrophages stimulated with APN, Cot/tpl2 influences the ability to phagocytose beads. However, Cot/tpl2 did not modulate the known capacity of APN to decrease lipid content in peritoneal macrophages in response to treatment with oxLDL or acLDL. A microarray analysis of gene-expression profiles in BMDMs exposed to APN revealed that APN modulated the expression of ∼3300 genes; the most significantly affected biological functions were the inflammatory and the infectious disease responses. qRT-PCR analysis of WT and Cot/tpl2 KO macrophages stimulated with APN for 0, 3, and 18 h revealed that Cot/tpl2 participated in the up-regulation of APN target inflammatory mediators included in the cytokine-cytokine receptor interaction pathway (KEGG ID 4060). In accordance with these data, macrophages stimulated with APN increased secretion of cytokines and chemokines, including IL-1ß, IL-1α, TNF-α, IL-10, IL-12, IL-6, and CCL2. Moreover, Cot/tpl2 also played an important role in the production of these inflammatory mediators upon stimulation of macrophages with APN. It has been reported that different types of signals that stimulate TLRs, IL-1R, TNFR, FcγR, and proteinase-activated receptor-1 activate Cot/tpl2. Here, we demonstrate that APN is a new signal that activates the IKKß-p105/NF-κΒ1-Cot/tpl2-MKK1/2-Erk1/2 axis in macrophages. Furthermore, this signaling cassette modulates the biological functions triggered by APN in macrophages.


Assuntos
Adiponectina/farmacologia , MAP Quinase Quinase Quinases/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/fisiologia , Animais , Quimiocinas/biossíntese , Citocinas/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase I-kappa B/fisiologia , Interleucina-10/fisiologia , MAP Quinase Quinase 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Fagocitose/efeitos dos fármacos
8.
J Biol Chem ; 288(21): 15342-51, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23572518

RESUMO

Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Fígado/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Acetaminofen/farmacologia , Alanina Transaminase/sangue , Alanina Transaminase/genética , Analgésicos não Narcóticos/farmacologia , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/genética , Linhagem Celular Transformada , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Fígado/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/enzimologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Neutrófilos/enzimologia , Neutrófilos/patologia , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA