Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 74, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702730

RESUMO

The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.


Assuntos
Glândulas Mamárias Animais , Proteínas Repressoras , Fator de Resposta Sérica , Células-Tronco , Fatores de Transcrição , Animais , Feminino , Camundongos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/genética , Humanos , Transativadores/metabolismo , Transativadores/genética
2.
EMBO Mol Med ; 15(4): e16715, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36880458

RESUMO

Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2,000 breast tumors (777 estrogen receptor-negative, ER- ) from four independent cohorts. RANK protein expression was more frequent in ER- tumors, where it associated with poor outcome and poor response to chemotherapy. In ER- breast cancer patient-derived orthoxenografts (PDXs), RANKL inhibition reduced tumor cell proliferation and stemness, regulated tumor immunity and metabolism, and improved response to chemotherapy. Intriguingly, tumor RANK protein expression associated with poor prognosis in postmenopausal breast cancer patients, activation of NFKB signaling, and modulation of immune and metabolic pathways, suggesting that RANK signaling increases after menopause. Our results demonstrate that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and ER- breast cancer patients and support the therapeutic benefit of RANK pathway inhibitors, such as denosumab, in breast cancer patients with RANK+ ER- tumors after menopause.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Denosumab/farmacologia , Denosumab/uso terapêutico , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/uso terapêutico , Pós-Menopausa , Ligante RANK , Transdução de Sinais
3.
Sci Rep ; 12(1): 19793, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396684

RESUMO

Gastro-intestinal stromal tumors and acute myeloid leukemia induced by activating stem cell factor receptor tyrosine kinase (KIT) mutations are highly malignant. Less clear is the role of KIT mutations in the context of breast cancer. Treatment success of KIT-induced cancers is still unsatisfactory because of primary or secondary resistance to therapy. Mouse models offer essential platforms for studies on molecular disease mechanisms in basic cancer research. In the course of the Munich N-ethyl-N-nitrosourea (ENU) mutagenesis program a mouse line with inherited polycythemia was established. It carries a base-pair exchange in the Kit gene leading to an amino acid exchange at position 824 in the activation loop of KIT. This KIT variant corresponds to the N822K mutation found in human cancers, which is associated with imatinib-resistance. C3H KitN824K/WT mice develop hyperplasia of interstitial cells of Cajal and retention of ingesta in the cecum. In contrast to previous Kit-mutant models, we observe a benign course of gastrointestinal pathology associated with prolonged survival. Female mutants develop mammary carcinomas at late onset and subsequent lung metastasis. The disease model complements existing oncology research platforms. It allows for addressing the role of KIT mutations in breast cancer and identifying genetic and environmental modifiers of disease progression.


Assuntos
Neoplasias da Mama , Tumores do Estroma Gastrointestinal , Camundongos , Feminino , Humanos , Animais , Penetrância , Camundongos Endogâmicos C3H , Proteínas Proto-Oncogênicas c-kit/genética , Tumores do Estroma Gastrointestinal/genética , Modelos Animais de Doenças , Neoplasias da Mama/genética
4.
Sci Rep ; 12(1): 14608, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028522

RESUMO

Animal models are an indispensable platform used in various research disciplines, enabling, for example, studies of basic biological mechanisms, pathological processes and new therapeutic interventions. In this study, we applied magnetic resonance imaging (MRI) to characterize the clinical picture of a novel N-ethyl-N-nitrosourea-induced Kit-mutant mouse in vivo. Seven C3H KitN824K/WT mutant animals each of both sexes and their littermates were monitored every other month for a period of twelve months. MRI relaxometry data of hematopoietic bone marrow and splenic tissue as well as high-resolution images of the gastrointestinal organs were acquired. Compared with controls, the mutants showed a dynamic change in the shape and volume of the cecum and enlarged Peyer´s patches were identified throughout the entire study. Mammary tumors were observed in the majority of mutant females and were first detected at eight months of age. Using relaxation measurements, a substantial decrease in longitudinal relaxation times in hematopoietic tissue was detected in mutants at one year of age. In contrast, transverse relaxation time of splenic tissue showed no differences between genotypes, except in two mutant mice, one of which had leukemia and the other hemangioma. In this study, in vivo MRI was used for the first time to thoroughly characterize the evolution of systemic manifestations of a novel Kit-induced tumor model and to document the observable organ-specific disease cascade.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias Mamárias Animais , Animais , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H
5.
Dev Cell ; 56(12): 1727-1741.e7, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34004159

RESUMO

Rank signaling enhances stemness in mouse and human mammary epithelial cells (MECs) and mediates mammary tumor initiation. Mammary tumors initiated by oncogenes or carcinogen exposure display high levels of Rank and Rank pathway inhibitors have emerged as a new strategy for breast cancer prevention and treatment. Here, we show that ectopic Rank expression in the mammary epithelia unexpectedly delays tumor onset and reduces tumor incidence in the oncogene-driven Neu and PyMT models. Mechanistically, we have found that ectopic expression of Rank or exposure to Rankl induces senescence, even in the absence of other oncogenic mutations. Rank leads to DNA damage and senescence through p16/p19. Moreover, RANK-induced senescence is essential for Rank-driven stemness, and although initially translates into delayed tumor growth, eventually promotes tumor progression and metastasis. We uncover a dual role for Rank in the mammary epithelia: Rank induces senescence and stemness, delaying tumor initiation but increasing tumor aggressiveness.


Assuntos
Neoplasias da Mama/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Mamárias Animais/genética , Ligante RANK/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Envelhecimento/genética , Animais , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Dano ao DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Experimentais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
6.
Breast Cancer Res ; 23(1): 42, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785053

RESUMO

BACKGROUND: Around 15-20% of primary breast cancers are characterized by HER2 protein overexpression and/or HER2 gene amplification. Despite the successful development of anti-HER2 drugs, intrinsic and acquired resistance represents a major hurdle. This study was performed to analyze the RANK pathway contribution in HER2-positive breast cancer and anti-HER2 therapy resistance. METHODS: RANK and RANKL protein expression was assessed in samples from HER2-positive breast cancer patients resistant to anti-HER2 therapy and treatment-naive patients. RANK and RANKL gene expression was analyzed in paired samples from patients treated with neoadjuvant dual HER2-blockade (lapatinib and trastuzumab) from the SOLTI-1114 PAMELA trial. Additionally, HER2-positive breast cancer cell lines were used to modulate RANK expression and analyze in vitro the contribution of RANK signaling to anti-HER2 resistance and downstream signaling. RESULTS: RANK and RANKL proteins are more frequently detected in HER2-positive tumors that have acquired resistance to anti-HER2 therapies than in treatment-naive ones. RANK (but not RANKL) gene expression increased after dual anti-HER2 neoadjuvant therapy in the cohort from the SOLTI-1114 PAMELA trial. Results in HER2-positive breast cancer cell lines recapitulate the clinical observations, with increased RANK expression observed after short-term treatment with the HER2 inhibitor lapatinib or dual anti-HER2 therapy and in lapatinib-resistant cells. After RANKL stimulation, lapatinib-resistant cells show increased NF-κB activation compared to their sensitive counterparts, confirming the enhanced functionality of the RANK pathway in anti-HER2-resistant breast cancer. Overactivation of the RANK signaling pathway enhances ERK and NF-κB signaling and increases lapatinib resistance in different HER2-positive breast cancer cell lines, whereas RANK loss sensitizes lapatinib-resistant cells to the drug. Our results indicate that ErbB signaling is required for RANK/RANKL-driven activation of ERK in several HER2-positive cell lines. In contrast, lapatinib is not able to counteract the NF-κB activation elicited after RANKL treatment in RANK-overexpressing cells. Finally, we show that RANK binds to HER2 in breast cancer cells and that enhanced RANK pathway activation alters HER2 phosphorylation status. CONCLUSIONS: Our data support a physical and functional link between RANK and HER2 signaling in breast cancer and demonstrate that increased RANK signaling may contribute to the development of lapatinib resistance through NF-κB activation. Whether HER2-positive breast cancer patients with tumoral RANK expression might benefit from dual HER2 and RANK inhibition therapy remains to be elucidated.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lapatinib/uso terapêutico , NF-kappa B/metabolismo , Terapia Neoadjuvante , Ligação Proteica , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais , Trastuzumab/uso terapêutico
7.
Sci Adv ; 6(35): eaaz4551, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923617

RESUMO

Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Proliferação de Células , Neoplasias Hepáticas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases
8.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32217665

RESUMO

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/enzimologia , Mutação , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biossíntese de Proteínas/genética , RNA Ribossômico 18S/metabolismo
9.
FEBS J ; 283(11): 2018-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26749530

RESUMO

The RANK signaling pathway has emerged as a new target in breast cancer as receptor activator of nuclear factor κB ligand (RANKL) and its receptor RANK mediate the pro-tumorigenic role of progesterone in the mammary gland. Thousands of cancer patients worldwide are already taking RANKL inhibitors for the management of bone metastasis, given the relevance of this pathway in osteoclastogenesis and bone resorption. RANK signaling also has multiple divergent effects in immunity and inflammation, both in the generation of active immune responses and in the induction of tolerance: it is required for lymph node organogenesis, thymic medullary epithelial development and self-tolerance, and regulates activation of several immune cells and inflammatory processes. The RANK pathway interferes with mammary epithelial differentiation and mediates the major proliferative response of mammary epithelium to progesterone and progesterone-driven expansion of mammary stem cells; it also controls hair follicle and epidermal stem cell homeostasis, pointing to RANK as a key regulator of epithelial stemness. Here we revisit the main functions of RANK signaling in bone remodeling, immune cells and epithelial differentiation. We also discuss the mechanistic evidence that supports its pleiotropic effects on cancer: from bone metastasis to immune and cancer-cell-dependent effects.


Assuntos
Neoplasias da Mama/genética , Ligante RANK/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Remodelação Óssea/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Diferenciação Celular , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Terapia de Alvo Molecular , Ligante RANK/antagonistas & inibidores , Transdução de Sinais
10.
Stem Cells ; 34(4): 1027-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26695351

RESUMO

Prolactin and progesterone both orchestrate the proliferation and differentiation of the mammary gland during gestation. Differentiation of milk secreting alveoli depends on the presence of prolactin receptor, the downstream Jak2-Stat5 pathway and the transcription factor Elf5. A strict regulation of Rank signaling is essential for the differentiation of the mammary gland and in particular for alveolar commitment. Impaired alveologenesis and lactation failure are observed in both, knockout and Rank overexpressing mice; however, the underlying molecular mechanism responsible for these phenotypes remains largely unknown. Using genome-wide expression analyses and functional studies, we show here that Rankl (RL) exposure leads to impaired secretory differentiation of alveolar cells not only in MMTV-RANK but also in wild-type (WT) mammary acini. Conversely, pharmacological blockage of Rank signaling at midgestation in WT mice leads to precocious and exacerbated lactogenesis. Mechanistically, RL negatively regulates Stat5 phosphorylation and Elf5 expression at the onset of lactogenesis. Continuous RL exposure leads to the expansion of basal and bipotent cells in WT and MMTV-RANK acini. Overall, we demonstrate that enhanced Rank signaling impairs secretory differentiation during pregnancy by inhibition of the prolactin/p-Stat5 pathway.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Prolactina/genética , Ligante RANK/genética , Fator de Transcrição STAT5/genética , Fatores de Transcrição/genética , Animais , Proliferação de Células/genética , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Lactação/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Progesterona/genética , Progesterona/metabolismo , Prolactina/metabolismo , Ligante RANK/biossíntese , Fator de Transcrição STAT5/biossíntese , Transdução de Sinais , Fatores de Transcrição/biossíntese
11.
PLoS One ; 7(4): e34885, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509363

RESUMO

The transcription factor Miz1 forms repressive DNA-binding complexes with the Myc, Gfi-1 and Bcl-6 oncoproteins. Known target genes of these complexes encode the cyclin-dependent kinase inhibitors (CKIs) cdkn2b (p15(Ink4)), cdkn1a (p21(Cip1)), and cdkn1c (p57(Kip2)). Whether Miz1-mediated repression is important for control of cell proliferation in vivo and for tumor formation is unknown. Here we show that deletion of the Miz1 POZ domain, which is critical for Miz1 function, restrains the development of skin tumors in a model of chemically-induced, Ras-dependent tumorigenesis. While the stem cell compartment appears unaffected, interfollicular keratinocytes lacking functional Miz1 exhibit a reduced proliferation and an accelerated differentiation of the epidermis in response to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Tumorigenesis, proliferation and normal differentiation are restored in animals lacking cdkn1a, but not in those lacking cdkn2b. Our data demonstrate that Miz1-mediated attenuation of cell cycle arrest pathways via repression of cdkn1a has a critical role during tumorigenesis in the skin.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/genética , Proteínas Inibidoras de STAT Ativados/genética , Estrutura Terciária de Proteína/genética , Neoplasias Cutâneas/metabolismo , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Proteínas Nucleares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol/farmacologia , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA