Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 126, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773641

RESUMO

BACKGROUND: DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS: To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS: Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.


Assuntos
Replicação do DNA , RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , Humanos , Fase S/genética , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Genoma Humano , Origem de Replicação
2.
Nat Commun ; 14(1): 5071, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604812

RESUMO

Cell division is the basis for the propagation of life and requires accurate duplication of all genetic information. DNA damage created during replication (replication stress) is a major cause of cancer, premature aging and a spectrum of other human disorders. Over the years, TRAIP E3 ubiquitin ligase has been shown to play a role in various cellular processes that govern genome integrity and faultless segregation. TRAIP is essential for cell viability, and mutations in TRAIP ubiquitin ligase activity lead to primordial dwarfism in patients. Here, we have determined the mechanism of inhibition of cell proliferation in TRAIP-depleted cells. We have taken advantage of the auxin induced degron system to rapidly degrade TRAIP within cells and to dissect the importance of various functions of TRAIP in different stages of the cell cycle. We conclude that upon rapid TRAIP degradation, specifically in S-phase, cells cease to proliferate, arrest in G2 stage of the cell cycle and undergo senescence. Our findings reveal that TRAIP works in S-phase to prevent DNA damage at transcription start sites, caused by replication-transcription conflicts.


Assuntos
Ubiquitina-Proteína Ligases , Humanos , Fase S/genética , Divisão Celular/genética , Proliferação de Células/genética , Ciclo Celular , Sobrevivência Celular , Ubiquitina-Proteína Ligases/genética
3.
Mol Cell ; 82(10): 1924-1939.e10, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439434

RESUMO

The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a Telômeros , Proteína BRCA1/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
4.
Cell Rep ; 25(8): 2061-2069.e4, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463005

RESUMO

BET bromodomain proteins are required for oncogenic transcription activities, and BET inhibitors have been rapidly advanced into clinical trials. Understanding the effects of BET inhibition on processes such as DNA replication will be important for future clinical applications. Here, we show that BET inhibition, and specifically inhibition of BRD4, causes replication stress through a rapid overall increase in RNA synthesis. We provide evidence that BET inhibition acts by releasing P-TEFb from its inhibitor HEXIM1, promoting interference between transcription and replication. Unusually, these transcription-replication conflicts do not activate the ATM/ATR-dependent DNA damage response but recruit the homologous recombination factor RAD51. Both HEXIM1 and RAD51 promote BET inhibitor-induced fork slowing but also prevent a DNA damage response. Our data suggest that BET inhibitors slow replication through concerted action of transcription and recombination machineries and shed light on the importance of replication stress in the action of this class of experimental cancer drugs.


Assuntos
Replicação do DNA , Proteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Rad51 Recombinase/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Proteínas/metabolismo , Fatores de Transcrição
5.
Genes Dev ; 30(4): 408-20, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883360

RESUMO

Genome instability is a recurring feature of tumorigenesis. Mutation in MLL2, encoding a histone methyltransferase, is a driver in numerous different cancer types, but the mechanism is unclear. Here, we present evidence that MLL2 mutation results in genome instability. Mouse cells in which MLL2 gene deletion can be induced display elevated levels of sister chromatid exchange, gross chromosomal aberrations, 53BP1 foci, and micronuclei. Human MLL2 knockout cells are characterized by genome instability as well. Interestingly, MLL2 interacts with RNA polymerase II (RNAPII) and RECQL5, and, although MLL2 mutated cells have normal overall H3K4me levels in genes, nucleosomes in the immediate vicinity of RNAPII are hypomethylated. Importantly, MLL2 mutated cells display signs of substantial transcription stress, and the most affected genes overlap with early replicating fragile sites, show elevated levels of γH2AX, and suffer frequent mutation. The requirement for MLL2 in the maintenance of genome stability in genes helps explain its widespread role in cancer and points to transcription stress as a strong driver in tumorigenesis.


Assuntos
Instabilidade Genômica/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Transcrição Gênica/genética , Animais , Linhagem Celular , Dano ao DNA/genética , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Mutação , RNA Polimerase II/metabolismo , RecQ Helicases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA