Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9107, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643283

RESUMO

Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.


Assuntos
Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Eur J Protistol ; 91: 126032, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37948889

RESUMO

Acanthamoeba castellanii is a free-living amoeba that acts as an opportunistic pathogen for humans and is the pathogenic agent of Acanthamoeba keratitis (AK). A. castellanii may present as proliferative and infective trophozoites or as resistant cysts during their life cycle. The immune response against AK is still poorly explored; however, it is well established that macrophages and neutrophils play essential roles in controlling corneal infection during the disease outcome. The release of NETs is one of the innate immune strategies to prevent parasite infection, especially when neutrophils interact with microorganisms that are too large to be phagocytosed, which is the case for amoeba species. The present work demonstrated that A. castellanii trophozoites can trigger NET formation upon in vitro interaction with neutrophils. Using DNase as a control, we observed increased parasite survival after coinciding with neutrophils, which may be correlated with NET degradation. Indeed, A. castellanii trophozoites degrade the NET DNA scaffold. Molecular analysis confirmed the occurrence of a 3'-nucleotidase/nuclease (3'-NT/NU) in the A. castellanii genome. We also demonstrated that trophozoites exhibit significantly higher 3'-NT/NU activity than cysts, which cannot trigger NET release. Considering that previous studies indicated the pathological role of 3'-NT-/NU in parasite infection, we suggest that this enzyme may act as the mechanism of escape of A. castellanii trophozoites from NETs.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Armadilhas Extracelulares , Animais , Humanos , Trofozoítos/fisiologia , Ceratite por Acanthamoeba/parasitologia
3.
Front Immunol ; 12: 651740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828561

RESUMO

Chronic wounds are a public health problem worldwide, especially those related to diabetes. Besides being an enormous burden to patients, it challenges wound care professionals and causes a great financial cost to health system. Considering the absence of effective treatments for chronic wounds, our aim was to better understand the pathophysiology of tissue repair in diabetes in order to find alternative strategies to accelerate wound healing. Nucleotides have been described as extracellular signaling molecules in different inflammatory processes, including tissue repair. Adenosine-5'-diphosphate (ADP) plays important roles in vascular and cellular response and is immediately released after tissue injury, mainly from platelets. However, despite the well described effect on platelet aggregation during inflammation and injury, little is known about the role of ADP on the multiple steps of tissue repair, particularly in skin wounds. Therefore, we used the full-thickness excisional wound model to evaluate the effect of local ADP application in wounds of diabetic mice. ADP accelerated cutaneous wound healing, improved new tissue formation, and increased both collagen deposition and transforming growth factor-ß (TGF-ß) production in the wound. These effects were mediated by P2Y12 receptor activation since they were inhibited by Clopidogrel (Clop) treatment, a P2Y12 receptor antagonist. Furthermore, P2Y1 receptor antagonist also blocked ADP-induced wound closure until day 7, suggesting its involvement early in repair process. Interestingly, ADP treatment increased the expression of P2Y12 and P2Y1 receptors in the wound. In parallel, ADP reduced reactive oxygen species (ROS) formation and tumor necrosis factor-α (TNF-α) levels, while increased IL-13 levels in the skin. Also, ADP increased the counts of neutrophils, eosinophils, mast cells, and gamma delta (γδ) T cells (Vγ4+ and Vγ5+ cells subtypes of γδ+ T cells), although reduced regulatory T (Tregs) cells in the lesion. In accordance, ADP increased fibroblast proliferation and migration, myofibroblast differentiation, and keratinocyte proliferation. In conclusion, we provide strong evidence that ADP acts as a pro-resolution mediator in diabetes-associated skin wounds and is a promising intervention target for this worldwide problem.


Assuntos
Difosfato de Adenosina/farmacologia , Diabetes Mellitus Experimental/complicações , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Cicatrização/efeitos dos fármacos , Difosfato de Adenosina/uso terapêutico , Administração Cutânea , Aloxano/administração & dosagem , Aloxano/toxicidade , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Humanos , Masculino , Camundongos , Agonistas do Receptor Purinérgico P2Y/uso terapêutico , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia
4.
Parasitol Int ; 83: 102342, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33831578

RESUMO

Leishmaniasis is a neglected broad clinical spectrum disease caused by protozoa of the genus Leishmania, which affect millions of people annually in the world and the treatment has severe side effects and resistant strains have been reported. Mesoionic salts are a subclass of the betaine group with extensive biological activity such as microbicide and anti-inflammatory In this work, we analyze the cytotoxic effects of mesoionic salts, 4-phenyl-5-(X-phenyl)-1,3,4-thiadiazolium-2-phenylamine chloride (X = 4 Cl; 3,4 diCl and 3,4 diF), on Leishmania amazonensis in vitro. Initially, Mesoionic salts toxicity were evaluated by XTT assay on L. amazonensis promastigotes. Our results show that the mesoionic salts MI-3,4 diCl, MI-4 Cl and MI-3,4 diF were toxic to the promastigote parasite with IC50 values of 14.3, 40.1 and 61.8 µM, respectively. The amastigote survival was evaluated in treated infected-macrophages, and the results demonstrate that MI-4 Cl (IC50 = 33 µM) and MI-3,4 diCl (IC50 = 43 µM) have a toxic effect against these forms. None of the mesoionic compounds tested present host cell toxicity up to the tested concentration of 100 µM. The selectivity index for MI-3,4 diCl and MI-4 Cl were 3.94 and 6.97, respectively. Nitric oxide (NO) production assayed by Griess reagent, in LPS-activated macrophages or not, in the presence of the salts showed that only the MI-3,4 diCl compound reduced NO levels. Lipid profile analysis of treated-promastigotes showed no alteration of neutral lipids. Evaluation of mitochondrial membrane potential (∆Ψm) showed that the MI-4Cl compound was able to reduce (∆Ψm) by 50%. Therefore, our results suggest that the chlorinated compounds are promising biomolecules, which cause inhibition of L.amazonensis promastigotes, amastigotes, leading to mitochondrial damage.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Tripanossomicidas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Sais/farmacologia
5.
Sci Rep ; 10(1): 19603, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177532

RESUMO

Neutrophils release extracellular traps (NETs) after interaction with microorganisms and physiological or synthetic products. NETs consist of decondensed chromatin complexed with proteins, some of them with microbicidal properties. Because NETs can modulate the functioning of HIV-1 target cells, we aimed to verify whether they modify HIV-1 replication in macrophages. We found that exposure of HIV-1-infected macrophages to NETs resulted in significant inhibition of viral replication. The NET anti-HIV-1 action was independent of other soluble factors released by the activated neutrophils, but otherwise dependent on the molecular integrity of NETs, since NET-treatment with protease or DNase abolished this effect. NETs induced macrophage production of the anti-HIV-1 ß-chemokines Rantes and MIP-1ß, and reduced the levels of integrated HIV-1 DNA in the macrophage genome, which may explain the decreased virus production by infected macrophages. Moreover, the residual virions released by NET-treated HIV-1-infected macrophages lost infectivity. In addition, elevated levels of DNA-elastase complexes were detected in the plasma from HIV-1-infected individuals, and neutrophils from these patients released NETs, which also inhibited HIV-1 replication in in vitro infected macrophages. Our results reveal that NETs may function as an innate immunity mechanism able to restrain HIV-1 production in macrophages.


Assuntos
Armadilhas Extracelulares , Infecções por HIV/sangue , HIV-1/fisiologia , Macrófagos/virologia , Neutrófilos/citologia , Sobrevivência Celular , Células Cultivadas , Quimiocinas CC/metabolismo , DNA Viral/metabolismo , Armadilhas Extracelulares/genética , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Macrófagos/metabolismo , Neutrófilos/virologia , Replicação Viral/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-32596164

RESUMO

Leishmaniasis is an anthropozoonotic disease, and dogs are considered the main urban reservoir of the parasite. Macrophages, the target cells of Leishmania sp., play an important role during infection. Although dogs have a major importance in the epidemiology of the disease, the majority of the current knowledge about Leishmania-macrophage interaction comes from murine experimental models. To assess whether the canine macrophage strain DH82 is an accurate model for the study of Leishmania interaction, we compared its infection by two species of Leishmania (Leishmania infantum and L. amazonensis) with the murine macrophage cell line (RAW264.7). Our results demonstrated that L. amazonensis survival was around 40% at 24 h of infection inside both macrophage cell lines; however, a reduction of 4.3 times in L. amazonensis infection at 48 h post-infection in RAW 264.7 macrophages was observed. The survival index of L. infantum in DH82 canine macrophages was around 3 times higher than that in RAW264.7 murine cells at 24 and 48 h post-infection; however, at 48 h a reduction in both macrophages was observed. Surprisingly at 24 h post-infection, NO and ROS production by DH82 canine cells stimulated with LPS or menadione or during Leishmania infection was minor compared to murine RAW264.7. However, basal arginase activity was higher in DH82 cells when compared to murine RAW264.7 cells. Analysis of the cytokines showed that these macrophages present a different response profile. L. infantum induced IL-12, and L. amazonensis induced IL-10 in both cell lines. However, L. infantum and L. amazonensis also induced TGF-ß in RAW 264.7. CD86 and MHC expression showed that L. amazonensis modulated them in both cell lines. Conversely, the parasite load profile did not show significant difference between both macrophage cell lines after 48 h of infection, which suggests that other mechanisms of Leishmania control could be involved in DH82 cells.


Assuntos
Leishmania infantum , Leishmania mexicana , Animais , Linhagem Celular , Cães , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C
7.
J Ethnopharmacol ; 259: 112981, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32442591

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Leishmaniasis is a neglected disease that affects millions of people around the world. Parasite resistance and the toxicity to the current treatments lead to the search for new effective molecules. Plants are widely used in traditional and indigenous medicine to treat different diseases. The oleoresin of the genus Protium, which is rich in volatile compounds active against different microorganisms, is among these plants. AIM: The aim of this study was to evaluate the leishmanicidal potential of Protium altsonii (PaEO) and P. hebetatum (PhEO) (Burseraceae) oleoresins, as well as of three representative monoterpenes in their constitution: α-pinene, p-cymene and 1,8-cineole. MATERIALS AND METHODS: Protium altsonii (PaEO) and P. hebetatum (PhEO) oleoresins and three of their constituents were tested in vitro on promastigotes and amastigotes-infected macrophages in different concentrations. Their toxicity for macrophages was analyzed by XTT assay and phagocytic ability. It was evaluated the ability of the compounds to induce NO production on treated-macrophages using Griess reaction and the effect of them in lipid profile on treated-parasite through Thin Layer Chromatography. RESULTS: Our data showed that both essential oils have toxic effect on promastigotes and amastigotes of L. amazonensis in vitro in a dose-dependent manner. PaEO IC50 were 14.8 µg/mL and 7.8 µg/mL and PhEO IC50s were 0.46 µg/mL and 30.5 µg/m for promastigotes and amastigotes, respectively. Toxicity to macrophages was not observed at 50 µg/mL with both EOs. The compounds 1,8- cineole, α-pinene, and p-cymene inhibited amastigotes survival in a dose-dependent manner with IC50s of 48.4 µg/mL, 37 µg/mL, 46 µg/mL, respectively. Macrophage viability was around 90% even at 200 µg/mL and the phagocytic capacity was not altered in the treated-macrophages to up 50 µg/mL. The compounds were not able to modulate the nitric oxide production either at rest or LPS-activated macrophages. In addition, treated promastigote revealed an important change in their lipid profile after 48 h at 50 µg/mL in the presence of the compounds. CONCLUSIONS: The results indicate that oleoresins of Protium genus are potent against Leishmania and α-pinene, p-cymene and 1,8-cineole have anti-Leishmania properties that could be explored in synergistic assays in order to develop new drug candidates.


Assuntos
Antiprotozoários/farmacologia , Burseraceae , Leishmania mexicana/efeitos dos fármacos , Macrófagos/parasitologia , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Antiprotozoários/isolamento & purificação , Burseraceae/química , Burseraceae/classificação , Células Cultivadas , Relação Dose-Resposta a Droga , Leishmania mexicana/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Monoterpenos/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Carga Parasitária , Testes de Sensibilidade Parasitária , Óleos de Plantas/isolamento & purificação
8.
Sci Rep ; 10(1): 2715, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066757

RESUMO

Neutrophil extracellular traps (NETs) emerge from the cell as a DNA scaffold associated with cytoplasmic and granular proteins, able to immobilize and kill pathogens. This association occurs following nuclear and granular membrane disintegration, allowing contact with the decondensed chromatin. Thus, it is reasonable to speculate that the DNA can also mix with miRNAs and carry them in NETs. Here, we report for the first time the presence of the miRNA carriers associated with NETs and miRNAs present in NET-enriched supernatants (NET-miRs), thus adding a novel class of molecules and new proteins that can be released and transported in the NET platform. We observed that the majority of NET-miRs were common to all four stimuli used (PMA, interleukin-8, amyloid fibrils and Leishmania), and that miRNA-142-3p carried by NETs down-modulates protein kinase Cα and regulates TNF-α production in macrophages upon NET interaction with these cells. Our findings unveil a novel role for NETs in the cell communication processes, allowing the conveyance of miRNA from neutrophils to neighboring cells.


Assuntos
Comunicação Celular/imunologia , Armadilhas Extracelulares/imunologia , MicroRNAs/genética , Neutrófilos/imunologia , Fator de Necrose Tumoral alfa/genética , Amiloide/farmacologia , Antagomirs/genética , Antagomirs/metabolismo , Meios de Cultivo Condicionados/farmacologia , Armadilhas Extracelulares/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-8/farmacologia , Leishmania braziliensis , MicroRNAs/antagonistas & inibidores , MicroRNAs/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/microbiologia , Cultura Primária de Células , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/imunologia , Transdução de Sinais , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/imunologia
9.
BMC Neurol ; 19(1): 146, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253122

RESUMO

BACKGROUND: Familial amyloid polyneuropathy (FAP) or ATTRv (amyloid TTR variant) amyloidosis is a fatal hereditary disease characterized by the deposition of amyloid fibrils composed of transthyretin (TTR). The current diagnosis of ATTRv relies on genetic identification of TTR mutations and on Congo Red-positive amyloid deposits, which are absent in most ATTRv patients that are asymptomatic or early symptomatic, supporting the need for novel biomarkers to identify patients in earlier disease phases allowing disease control. METHODS: In an effort to search for new markers for ATTRv, our group searched for nine inflammation markers in ATTRv serum from a cohort of 28 Brazilian ATTRv patients. RESULTS: We found that the levels of six markers were increased (TNF-α, IL-1ß, IL-8, IL-33, IFN-ß and IL-10), one had decreased levels (IL-12) and two of them were unchanged (IL-6 and cortisol). Interestingly, asymptomatic patients already presented high levels of IL-33, IL-1ß and IL-10, suggesting that inflammation may take place before fibril deposition. CONCLUSIONS: Our findings shed light on a new, previously unidentified aspect of ATTRv, which might help define new criteria for disease management, as well as provide additional understanding of ATTRv aggressiveness.


Assuntos
Neuropatias Amiloides Familiares/sangue , Neuropatias Amiloides Familiares/imunologia , Biomarcadores/sangue , Inflamação/sangue , Inflamação/imunologia , Brasil , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Sci Rep ; 9(1): 6247, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000764

RESUMO

Visceral leishmaniasis is a chronic disease that affects humans and dogs as well. Dogs, the domestic reservoir of Leishmania, play a central role in the transmission of visceral leishmaniasis, the most severe form of this disease. Neutrophils are the most abundant leukocytes in blood and interact with the parasite after infection. Here, we evaluate the effector properties of neutrophils from healthy and naturally Leishmania infantum-infected dogs. Our results showed that the parasite induced neutrophil extracellular trap (NET) release from neutrophils in both groups. Additionally, phagocytosis and NETs contributed differently to parasite killing by neutrophils from healthy and infected animals, and IFN-γ, IL-8, IL-4 and TNF-α production by neutrophils from both groups were differentially modulated by the parasite. Our results contribute to a better understanding of the complex role played by neutrophils in canine visceral leishmaniasis, which may favor the development of more effective therapies.


Assuntos
Leishmania infantum/patogenicidade , Leishmaniose Visceral/veterinária , Neutrófilos/parasitologia , Animais , Doenças do Cão/sangue , Doenças do Cão/parasitologia , Cães , Armadilhas Extracelulares/parasitologia , Feminino , Interferon gama/metabolismo , Interleucina-4/metabolismo , Interleucina-8/metabolismo , Leishmaniose Visceral/sangue , Masculino , Neutrófilos/metabolismo , Fagocitose , Fator de Necrose Tumoral alfa/metabolismo
11.
PLoS Negl Trop Dis ; 13(2): e0007146, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30802247

RESUMO

Leishmania (L.) amazonensis is one of the etiological agents of cutaneous leishmaniasis (CL) in Brazil. Currently, there is no vaccine approved for human use against leishmaniasis, although several vaccine preparations are in experimental stages. One of them is Leishvacin, or LaAg, a first-generation vaccine composed of total L. amazonensis antigens that has consistently shown an increase of mouse resistance against CL when administered intranasally (i.n.). Since Toll-like receptor 9 (TLR9) is highly expressed in the nasal mucosa and LaAg is composed of TLR9-binding DNA CpG motifs, in this study we proposed to investigate the role of TLR9 in both L. amazonensis infection and in LaAg vaccine efficacy in C57BL/6 (WT) mice and TLR9-/- mice. First, we evaluated, the infection of macrophages by L. amazonensis in vitro, showing no significant difference between macrophages from WT and TLR9-/- mice in terms of both infection percentage and total number of intracellular amastigotes, as well as NO production. In addition, neutrophils from WT and TLR9-/- mice had similar capacity to produce neutrophil extracellular traps (NETs) in response to L. amazonensis. L. amazonensis did not activate dendritic cells from WT and TLR9-/- mice, analysed by MHCII and CD86 expression. However, in vivo, TLR9-/- mice were slightly more susceptible to L. amazonensis infection than WT mice, presenting a larger lesion and an increased parasite load at the peak of infection and in the chronic phase. The increased TLR9-/- mice susceptibility was accompanied by an increased IgG and IgG1 production; a decrease of IFN-γ in infected tissue, but not IL-4 and IL-10; and a decreased number of IFN-γ producing CD8+ T cells, but not CD4+ T cells in the lesion-draining lymph nodes. Also, TLR9-/- mice could not control parasite growth following i.n. LaAg vaccination unlike the WT mice. This protection failure was associated with a reduction of the hypersensitivity response induced by immunization. The TLR9-/- vaccinated mice failed to respond to antigen stimulation and to produce IFN-γ by lymph node cells. Together, these results suggest that TLR9 contributes to C57BL/6 mouse resistance against L. amazonensis, and that the TLR9-binding LaAg comprising CpG motifs may be important for intranasal vaccine efficacy against CL.


Assuntos
Leishmania mexicana/imunologia , Leishmaniose Cutânea/imunologia , Vacinas Protozoárias/imunologia , Receptor Toll-Like 9/imunologia , Administração Intranasal , Animais , Antígenos de Protozoários/imunologia , Ilhas de CpG , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Armadilhas Extracelulares , Interferon gama/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/parasitologia , Óxido Nítrico/biossíntese , Carga Parasitária , Receptor Toll-Like 9/genética , Vacinação
12.
Mol Biochem Parasitol ; 229: 6-14, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30772424

RESUMO

Leishmaniasis is one of the most significant of the neglected tropical diseases, with 350 million people in 98 countries worldwide living at risk of developing one of the many forms of the disease. During the transmission of the parasite from its vector to the vertebrate host, neutrophils are rapidly recruited to the site of the sandfly bite. Using different strategies, neutrophils can often kill a large number of parasites. However, some parasites can resist neutrophil-killing mechanisms and survive until macrophage arrival at the infection site. One of the strategies for neutrophil-mediated killing is the production of neutrophil extracellular traps (NETs). Because of its ecto-localized nuclease activity, the enzyme 3'-nucleotidase/nuclease (3'NT/NU), present in different Leishmania species, was recently identified as part of a possible parasite escape mechanism from NET-mediated death. Previous studies showed that 3'NT/NU also plays an important role in the establishment of Leishmania infection by generating extracellular adenosine that favors the parasite and macrophage interaction. This study aims to deepen the knowledge about 3'NT/NU, mainly with respect to its nuclease activity that is little studied in the current literature. For this, we cloned, expressed and purified the recombinant La3'NT/NU and have confirmed its contribution to the parasite escape from NET-mediated killing.


Assuntos
Desoxirribonucleases/imunologia , Armadilhas Extracelulares/imunologia , Leishmania/enzimologia , Leishmaniose/imunologia , Neutrófilos/imunologia , Nucleotidases/imunologia , Proteínas de Protozoários/imunologia , Clonagem Molecular , Desoxirribonucleases/genética , Armadilhas Extracelulares/parasitologia , Humanos , Leishmania/genética , Leishmania/imunologia , Leishmaniose/parasitologia , Nucleotidases/genética , Proteínas de Protozoários/genética
13.
Sci Rep ; 9(1): 20275, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889072

RESUMO

Leishmaniasis is a neglected disease, for which current treatment presents numerous issues. Leishmania amazonensis is the etiological agent of cutaneous and diffuse cutaneous leishmaniasis. The roles of the programmed death-1 (PD-1) receptor on lymphocytes and its ligand (PD-L1) on antigen-presenting cells have been well studied in tumor and other infection models; but little is known about their roles in non-healing cutaneous leishmaniasis. In this study, we observed that L. amazonensis induced PD-1 expression on both CD4+ and CD8+ T cells and PD-L1 on dendritic cells on BALB/c mice. We tested the therapeutic potential of anti-PD-1 and anti-PD-L1 monoclonal antibodies (MoAbs) against a non-healing L. amazonensis infection in BALB/c mice, and that anti-PD-1 and anti-PD-L1 treatment significantly increased IFN-γ-producing CD4+ and CD8+ T cells, respectively. Compared with infection controls, mice treated with anti-PD-1 and anti-PD-L1, but not anti-PD-L2, displayed bigger lesions with significantly lower parasite loads. Treatment did not affect anti-Leishmania antibody (IgM, IgG, IgG1 and IgG2a) or IL-10 production, but anti-PD-1 treatment reduced both IL-4 and TGF-ß production. Together, our results highlight the therapeutic potential of an anti-PD-1-based treatment in promoting the reinvigoration of T cells for the control of parasite burden.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
14.
Parasitology ; 145(9): 1219-1227, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29352826

RESUMO

Leishmaniases is a tropical disease caused by protozoa of the genus Leishmania for which the current treatment is expensive, besides increasing reports of parasite resistance. This study investigated the anti-Leishmania amazonensis activity of the essential oil from Aloysia gratissima (AgEO) and guaiol, the major sesquiterpene constituent in the oil. Our results showed that AgEO killed promastigotes and intracellular amastigotes at an IC50 of 25 and 0·16 µg mL-1, respectively, while guaiol killed amastigotes at an IC50 of 0·01 µg mL-1. Both AgEO and guaiol were safe for macrophages up to 100 µg mL-1, as evaluated by the dehydrogenase activity, membrane integrity and phagocytic capacity. AgEO and guaiol did not induce nitrite oxide (NO) in resting macrophages and inhibited the production of NO in lipopolysaccharide-stimulated macrophages. The ultrastructural analysis suggested that AgEO and guaiol act directly on parasites, affecting promastigotes kinetoplast, mitochondrial matrix and plasma membrane. Together, these results pointed out that AgEO and guaiol could be promising candidates to develop anti-Leishmania drugs.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Animais , Células Cultivadas , Concentração Inibidora 50 , Estágios do Ciclo de Vida , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Sesquiterpenos de Guaiano
15.
Sci Rep ; 7(1): 6438, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743887

RESUMO

Cancer patients are at an increased risk of developing thromboembolic complications. Several mechanisms have been proposed to explain cancer-associated thrombosis including the release of tumor-derived extracellular vesicles and the activation of host vascular cells. It was proposed that neutrophil extracellular traps (NETs) contribute to the prothrombotic phenotype in cancer. In this study, we evaluated the possible cooperation between tumor-derived exosomes and NETs in cancer-associated thrombosis. Female BALB/c mice were orthotopically injected with 4T1 breast cancer cells. The tumor-bearing animals exhibited increased levels of plasma DNA and myeloperoxidase in addition to significantly increased numbers of circulating neutrophils. Mice were subjected to either Rose Bengal/laser-induced venous thrombosis or ferric chloride-induced arterial thrombosis models. The tumor-bearing mice exhibited accelerated thrombus formation in both models compared to tumor-free animals. Treatment with recombinant human DNase 1 reversed the prothrombotic phenotype of tumor-bearing mice in both models. Remarkably, 4T1-derived exosomes induced NET formation in neutrophils from mice treated with granulocyte colony-stimulating factor (G-CSF). In addition, tumor-derived exosomes interacted with NETs under static conditions. Accordingly, the intravenous administration of 4T1-derived exosomes into G-CSF-treated mice significantly accelerated venous thrombosis in vivo. Taken together, our observations suggest that tumor-derived exosomes and neutrophils may act cooperatively in the establishment of cancer-associated thrombosis.


Assuntos
Exossomos/patologia , Neoplasias Mamárias Experimentais/patologia , Neutrófilos/patologia , Trombose/etiologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Armadilhas Extracelulares , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Neoplasias Mamárias Experimentais/complicações , Camundongos Endogâmicos BALB C , Trombose/tratamento farmacológico , Trombose Venosa/tratamento farmacológico , Trombose Venosa/etiologia
16.
Parasitol Int ; 66(1): 940-947, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27793725

RESUMO

Extracts of Serjania lethalis A. St.-Hil leaves and stems were tested in order to identify potential agents against Leishmania amazonensis. The hexane fraction (HF) and dichloromethane subfractions (DDF and MDF) showed leishmanicidal effect. The anti-promastigote IC50 values were 10.29 (HF), 11.41 (DDF) and 28.33µg/mL (MDF); whereas those against amastigote were 7.2 (HF), 8.1 (DDF) and 6.5µg/mL (MDF). Among the fractions and subfractions assayed, only HF altered the cell cycle of the parasite, increasing 3-fold the number of cells in the sub-G0/G1 phase. HF also changed the parasite mitochondrial membrane potential (ΔΨm) and the percentage of annexin-V-propidium iodide positive promastigotes. Our evaluations of the IC50 values showed that HF, DDF and MDF decreased NO production in infected macrophages stimulated with IFN-γ and LPS. Moreover, HF increased the production of TNF-α in Leishmania infected macrophages. This paper reports for the first time the leishmanicidal activity of extracts and fractions of Serjania lethalis leaves and also characterizes its leishmanicidal and immunomodulatory properties.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Magnoliopsida/química , Extratos Vegetais/farmacologia , Animais , Anexina A5/análise , Fase G1/efeitos dos fármacos , Hexanos/química , Imunomodulação , Concentração Inibidora 50 , Interferon gama/imunologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/fisiologia , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cloreto de Metileno/química , Camundongos , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Folhas de Planta/química , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese
17.
Mar Drugs ; 14(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618071

RESUMO

This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 µg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 µM (9 µg/mL) and 22.9 µM (10 µg/mL), and selectivity indexes of 8.4 µM and 11.5 µM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Phaeophyceae/química , Animais , Diterpenos/farmacologia , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Espectroscopia de Ressonância Magnética , Camundongos , Óxido Nítrico/biossíntese , Espécies Reativas de Oxigênio/metabolismo
18.
J Leukoc Biol ; 100(4): 801-810, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27154356

RESUMO

Upon in vitro stimulation, neutrophils undergo a cell death named netosis. This process is characterized by extracellular release of chromatin scaffold associated with granular and cytoplasmic proteins, which together, ensnare and kill microbes. We have previously described that interaction of Leishmania amazonensis with human neutrophils leads to the release of neutrophil extracellular traps, which trap and kill the parasite. However, the signaling leading to Leishmania induced netosis is still unknown. Thus, we sought to evaluate signaling events that drive L. amazonensis induced neutrophil extracellular trap release from human neutrophils. Here, we found that PI3K, independently of protein kinase B, has a role in parasite-induced netosis. We also described that the main isoforms involved are PI3Kγ and PI3Kδ, which work in reactive oxygen species-dependent and -independent ways, respectively. We demonstrated that activation of ERK downstream of PI3Kγ is important to trigger reactive oxygen species-dependent, parasite-induced netosis. Pharmacological inhibition of protein kinase C also significantly decreased parasite-induced neutrophil extracellular trap release. Intracellular calcium, regulated by PI3Kδ, represents an alternative reactive oxygen species-independent pathway of netosis stimulated by L. amazonensis Finally, intracellular calcium mobilization and reactive oxygen species generation are the major regulators of parasite-induced netosis. Our results contribute to a better understanding of the signaling behind netosis induced by interactions between Leishmania and neutrophils.


Assuntos
Sinalização do Cálcio/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Armadilhas Extracelulares/parasitologia , Leishmania mexicana/imunologia , Sistema de Sinalização das MAP Quinases , Neutrófilos/imunologia , Proteína Quinase C/fisiologia , Cromatina/ultraestrutura , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo
19.
Parasit Vectors ; 9: 264, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27146515

RESUMO

Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as the earliest stages of infection are important steps to understand the establishment of the disease, and could contribute in the future to new drug developments towards leishmaniasis.


Assuntos
Matriz Extracelular/patologia , Mordeduras e Picadas de Insetos/parasitologia , Leishmania/fisiologia , Macrófagos/fisiologia , Neutrófilos/fisiologia , Psychodidae/fisiologia , Animais , Humanos
20.
Sci Rep ; 5: 16777, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608746

RESUMO

HIV-1 co-infection with human parasitic diseases is a growing public health problem worldwide. Leishmania parasites infect and replicate inside macrophages, thereby subverting host signaling pathways, including the response mediated by PKR. The HIV-1 Tat protein interacts with PKR and plays a pivotal role in HIV-1 replication. This study shows that Tat increases both the expression and activation of PKR in Leishmania-infected macrophages. Importantly, the positive effect of Tat addition on parasite growth was dependent on PKR signaling, as demonstrated in PKR-deficient macrophages or macrophages treated with the PKR inhibitor. The effect of HIV-1 Tat on parasite growth was prevented when the supernatant of HIV-1-infected macrophages was treated with neutralizing anti-HIV-1 Tat prior to Leishmania infection. The addition of HIV-1 Tat to Leishmania-infected macrophages led to inhibition of iNOS expression, modulation of NF-kB activation and enhancement of IL-10 expression. Accordingly, the expression of a Tat construct containing mutations in the basic region (49-57aa), which is responsible for the interaction with PKR, favored neither parasite growth nor IL-10 expression in infected macrophages. In summary, we show that Tat enhances Leishmania growth through PKR signaling.


Assuntos
HIV-1/metabolismo , Leishmania/crescimento & desenvolvimento , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Interleucina-10/metabolismo , Espaço Intracelular/parasitologia , Leishmania/metabolismo , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos/enzimologia , Macrófagos/parasitologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA