Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(47): E11120-E11127, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397118

RESUMO

Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4-/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk-/- but not Abca4-/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4-/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4-/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Degeneração Macular/congênito , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Animais , Células Cultivadas , Modelos Animais de Doenças , Lipofuscina/metabolismo , Lisossomos/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fagocitose/imunologia , Retina/patologia , Degeneração Retiniana/patologia , Rodopsina/metabolismo , Doença de Stargardt , c-Mer Tirosina Quinase/genética
2.
Proc Natl Acad Sci U S A ; 114(15): 3987-3992, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348233

RESUMO

Recessive Stargardt macular degeneration (STGD1) is caused by mutations in the gene for the ABCA4 transporter in photoreceptor outer segments. STGD1 patients and Abca4-/- (STGD1) mice exhibit buildup of bisretinoid-containing lipofuscin pigments in the retinal pigment epithelium (RPE), increased oxidative stress, augmented complement activation and slow degeneration of photoreceptors. A reduction in complement negative regulatory proteins (CRPs), possibly owing to bisretinoid accumulation, may be responsible for the increased complement activation seen on the RPE of STGD1 mice. CRPs prevent attack on host cells by the complement system, and complement receptor 1-like protein y (CRRY) is an important CRP in mice. Here we attempted to rescue the phenotype in STGD1 mice by increasing expression of CRRY in the RPE using a gene therapy approach. We injected recombinant adeno-associated virus containing the CRRY coding sequence (AAV-CRRY) into the subretinal space of 4-wk-old Abca4-/- mice. This resulted in sustained, several-fold increased expression of CRRY in the RPE, which significantly reduced the complement factors C3/C3b in the RPE. Unexpectedly, AAV-CRRY-treated STGD1 mice also showed reduced accumulation of bisretinoids compared with sham-injected STGD1 control mice. Furthermore, we observed slower photoreceptor degeneration and increased visual chromophore in 1-y-old AAV-CRRY-treated STGD1 mice. Rescue of the STGD1 phenotype by AAV-CRRY gene therapy suggests that complement attack on the RPE is an important etiologic factor in STGD1. Modulation of the complement system by locally increasing CRP expression using targeted gene therapy represents a potential treatment strategy for STGD1 and other retinopathies associated with complement dysregulation.


Assuntos
Complemento C3/metabolismo , Degeneração Macular/congênito , Células Fotorreceptoras de Vertebrados/patologia , Receptores de Complemento/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Autofagia , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Injeções Intraoculares , Lipofuscina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Estresse Oxidativo , Células Fotorreceptoras de Vertebrados/metabolismo , Receptores de Complemento/genética , Receptores de Complemento 3b , Epitélio Pigmentado da Retina/patologia , Retinoides/metabolismo , Doença de Stargardt
3.
Nat Chem Biol ; 9(1): 30-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23143414

RESUMO

Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternative visual cycle for regenerating opsins in daylight. Here we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternative pathway. DES1 is expressed in retinal Müller cells, where it coimmunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in Rpe65(-/-) mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 had very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity.


Assuntos
Isomerases/metabolismo , Neuroglia/enzimologia , Oxirredutases/metabolismo , Retina/enzimologia , Vitamina A/metabolismo , Animais , Galinhas , Dependovirus/genética , Terapia Genética , Vetores Genéticos , Isomerases/química , Isomerismo , Camundongos , Camundongos Knockout , Oxirredutases/química , cis-trans-Isomerases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA