Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Pathol Res Pract ; 255: 155179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320439

RESUMO

Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , RNA não Traduzido/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/diagnóstico
2.
Int J Biol Macromol ; 263(Pt 1): 130160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367777

RESUMO

The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 µM) than pure CLA (IC50 = 17.15 ± 5.11 µM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.


Assuntos
Quitosana , Taninos Hidrolisáveis , Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Hialurônico , Simulação de Acoplamento Molecular , Sistemas de Liberação de Medicamentos
3.
J Cosmet Dermatol ; 23(3): 1045-1054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050657

RESUMO

OBJECTIVE: The current study aimed to provide preliminary insights into potential biopharmaceutical applications of Carica papaya seed extract by evaluating its phytochemical and biological profiles. Furthermore, the study aimed to develop a stable oil-in-water (O/W) emulsion for the effective delivery of antioxidant-rich biologicals for cosmetic purposes. METHODS: The hydroethanolic (ethanol 80%: 20% water) extract of C. papaya seeds was prepared via maceration technique. The chemical composition was carried out through preliminary phytochemical screening and estimation of total phenolic contents (TPC) and total flavonoid contents (TFC). The biological profile of the extract was explored using various in-vitro antioxidant methods. The homogenization procedure was used to create a cream of O/W and various tests were applied to assess the stability of the emulsion. By keeping the emulsion at different storage conditions (8 ± 0.5°C, 25 ± 0.5°C, 40 ± 0.5°C, and 40 ± 0.5°C ± 75% relative humidity [RH]) for a period of 28 days), the physical stability parameters of the emulsion, including pH, viscosity, centrifugation, phase separation, and conductivity, as well as rheological parameters and organoleptic parameters (odor, color, liquefaction, and creaming), were assessed. RESULTS: The preliminary phytochemical screening assay revealed the presence of various plant secondary metabolites including alkaloids, phenolics, flavonoids, tannins, saponins, and quinones. The extract was found to be rich in TPC and TFC. The in vitro antioxidant study gave maximum activity in the DPPH method. The plant extract containing cosmetic cream exhibited remarkable stability during the entire research. Data gathered indicated that no phase separation or liquefaction was seen after the experimental period. Throughout the experimental period, a small variation in the pH and conductivity values of the base and formulation was seen. CONCLUSION: The findings suggest that the seed extract of C. papaya is a rich source of polyphenols with antioxidant potential and can be a promising alternative for the treatment of various ailments. The stability of emulsion paves the way for its utilization as a carrier for the delivery of 3% C. papaya seed extract and applications in cosmetics products.


Assuntos
Produtos Biológicos , Carica , Humanos , Antioxidantes , Emulsões , Emolientes , Flavonoides , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Água
4.
Int J Biol Macromol ; 254(Pt 3): 127975, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944715

RESUMO

The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 µg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.


Assuntos
Antineoplásicos , Quitosana , Diosgenina , Nanopartículas Metálicas , Nanopartículas , Animais , Camundongos , Quitosana/química , Prata , Diosgenina/farmacologia , Diosgenina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química
5.
Int J Pharm ; 649: 123635, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000649

RESUMO

Asialoglycoprotein receptors (ASGPRs) are highly expressed on hepatocytes and have been used for liver-targeted delivery and hepatocellular carcinoma (HCC) therapy. However, targeted delivery of bortezomib (BTZ) to HCC has not been reported. In this study, N-stearyl lactobionamide (N-SALB) with galactose (Gal) moiety was synthesized as a targeting agent and its structure was confirmed by FT-IR and NMR analyses. N-SALB surface-modified solid lipid nanoparticles (SLNs) loaded with BTZ (Gal-SLNs/BTZ) were developed to target BTZ delivery into HCC cancer cells. The Gal-SLNs/BTZ had an average particle size of 116.3 nm, polydispersity index (PDI) of 0.210, and zeta potential of -13.8 mV. TEM analysis showed their nanometer-sized spherical morphology. The encapsulation efficiency (EE) and drug loading (DL) capacity were 84.5 % and 1.16 %, respectively. Release studies showed that BTZ loaded inside the SLNs was slowly released over a period of 72 h at pH 7.4. Flow cytometry analysis showed significantly higher intracellular uptake of N-SALB-targeted nanoparticles than non-targeted nanoparticles in HepG2 cells. All lipid formulations showed good biocompatibility in the cytotoxicity study using MTT assay. Concentration-dependent cytotoxicity was observed for all formulations, with N-SALB-targeted nanoparticles demonstrating more cytotoxicity against HepG2 cells. The highest percentage of apoptosis was obtained for N-SALB-targeted nanoparticles compared to non-targeted nanoparticles (42.2 % and 8.70 %, respectively). Finally, biodistribution studies in HepG2 bearing nude mice showed that the accumulation of targeted nanoparticles in the tumor was significantly higher than non-targeted nanoparticles.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Bortezomib , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Camundongos Nus , Distribuição Tecidual , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/uso terapêutico
6.
PLoS One ; 18(12): e0292455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127898

RESUMO

Cancer stands as a significant global cause of mortality, predominantly arising from the dysregulation of key enzymes and DNA. One strategic avenue in developing new anticancer agents involves targeting specific proteins within the cancer pathway. Amidst ongoing efforts to enhance the efficacy of anticancer drugs, a range of crucial medications currently interact with DNA at the molecular level, exerting profound biological effects. Our study is driven by the objective to comprehensively explore the potential of two compounds: (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione (A01) and 5-fluoro-1H-pyrimidine-2,4-dione (A02). These compounds have demonstrated marked efficacy against breast and cervical cancer cell lines, positioning them as promising anticancer candidates. In our investigation, A01 has emerged as a particularly potent candidate, with its potential bolstered by corroborative evidence from lactate dehydrogenase release and caspase-3 activity assays. On the other hand, A02 has exhibited remarkable anticancer potential. To further elucidate their molecular mechanisms and interactions, we employed computational techniques, including molecular docking and molecular dynamics simulations. Notably, our computational analyses suggest that the A01-DNA complex predominantly interacts via the minor groove, imparting significant insights into its mechanism of action. While earlier studies have also highlighted the anticancer activity of A01, our research contributes by providing a deeper understanding of its binding mechanisms through computational investigations. This knowledge holds potential for designing more effective drugs that target cancer-associated proteins. These findings lay a robust groundwork for future inquiries and propose that derivatives of A01 could be synthesized as potent bioactive agents for cancer treatment. By elucidating the distinctive aspects of our study's outcomes, we address the concern of distinguishing our findings from those of prior research.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Caspase 3 , Simulação de Acoplamento Molecular , L-Lactato Desidrogenase , Antineoplásicos/farmacologia , Antineoplásicos/química , Pirimidinas/farmacologia , DNA , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
7.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102555

RESUMO

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Assuntos
Brassica napus , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Brassica napus/metabolismo , Lisina/metabolismo , Ferro/metabolismo , Peróxido de Hidrogênio/metabolismo , Ecossistema , Antioxidantes/metabolismo , Estresse Oxidativo , Solo/química , Açúcares/metabolismo , Poluentes do Solo/metabolismo
8.
Nanomedicine (Lond) ; 18(25): 1855-1873, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37991168

RESUMO

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, typically diagnosed in advanced stages. Chemotherapy is necessary for treating advanced liver cancer; however, several challenges affect its effectiveness. These challenges include low specificity, high dosage requirements, high systemic toxicity and severe side effects, which significantly limit the efficacy of chemotherapy. These limitations can hinder the treatment of HCC. This review focuses on the prevalence of HCC, different types of liver cancer and the staging of the disease, along with available treatment methods. Additionally, explores recent and relevant studies on smart drug- and gene-delivery systems specifically designed for HCC. These systems include targeted endogenous and exogenous stimuli-responsive platforms.


Liver cancer is the third leading cause of cancer deaths in the world that is usually diagnosed in the last stages. Chemotherapy is commonly used to treat advanced liver cancer, but it faces several challenges that reduce its effectiveness. These challenges include low specificity (not targeting cancer cells specifically), high dosage requirements and side effects that can affect anywhere in the body. As a result, the efficacy of chemotherapy is significantly limited, making it difficult to treat liver cancer. This review discusses the prevalence of liver cancer, different types of liver cancer and how the disease is staged. It also explores various treatment methods available for liver cancer. Furthermore, the article explores recent and relevant studies on smart drug- and gene-delivery systems that are specifically designed to target liver cancer. These systems include platforms that respond to targeted and internal or external stimuli. They aim to improve the effectiveness of treatment for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Terapia de Alvo Molecular , Técnicas de Transferência de Genes
9.
Protein J ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940790

RESUMO

AKR1B1 and AKR1B10 are important members of aldo-keto reductase family which plays a significant role in cancer progression by modulating cellular metabolism. These enzymes are involved in various metabolic processes, including the synthesis and metabolism of hormones, detoxification of reactive aldehydes, and the reduction of various endogenous and exogenous compounds. This study aimed to explore the potential of strychnine as an anticancer agent by targeting AKR1B1 and AKR1B10 via drug repurposing approach. To assess the drug-like properties of strychnine, a physiologically based pharmacokinetic (PKPB) model and High Throughput Pharmacokinetics (HTPK) approach were employed. The obtained results fell within the expected range for drug molecules, confirming its suitability for further investigation. Additionally, density functional theory (DFT) studies were conducted to gain insight into the electronic properties contributing to the drug molecule's reactivity. Building upon the promising DFT results, molecular docking analysis using the AutoDock tool was performed to examine the binding interactions between strychnine and the proposed targets, AKR1B1 and AKR1B10. Findings from the molecular docking studies suggested a higher probability of strychnine acting as an inhibitor of AKR1B1 and AKR1B10 with docking scores of - 30.84 and - 29.36 kJ/mol respectively. To validate the stability of the protein-ligand complex, Molecular Dynamic Simulation (MDS) studies were conducted, revealing the formation of a stable complex between the enzymes and strychnine. This comprehensive approach sheds light on the potential effectiveness of strychnine as a treatment for breast, lung, liver, and pancreatic cancers, as well as related malignancies. The novel insights gained from the physiologically based pharmacokinetic modeling, density functional theory, molecular docking, and molecular dynamics simulations collectively support the prospect of strychnine as a promising molecule for anticancer therapy. Further investigations are warranted to validate these findings and explore the therapeutic potential of strychnine in preclinical and clinical settings.

10.
Transl Oncol ; 38: 101770, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716259

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) has been identified as the third gaseous signaling molecule. Endogenous H2S plays a key role in the progression of various types of cancer. However, the effect of endogenous H2S on the growth of esophageal cancer (EC) remains unknown. METHODS: In this study, three kinds of H2S-producing enzymes inhibitors, DL-propargylglycine (PAG, inhibitor of cystathionine-γ-lyase), aminooxyacetic acid (AOAA, inhibitor of cystathionine-ß-synthase), and L-aspartic acid (L-Asp, inhibitor of 3-mercaptopyruvate sulfurtransferase) were used to determine the role of endogenous H2S in the growth of EC9706 and K450 human EC cells. RESULTS: The results indicated that the combination (PAG+AOAA+L-Asp) group showed higher inhibitory effects on the viability, proliferation, migration, and invasion of EC cells than PAG, AOAA, and L-Asp group. Inhibition of endogenous H2S promoted apoptosis via activation of mitogen-activated protein kinase pathway in EC cells. Endogenous H2S suppression triggered pyroptosis of EC cells by activating reactive oxygen species-mediated nuclear factor-κB signaling pathway. In addition, the combine group showed its more powerful growth-inhibitory effect on the growth of human EC xenograft tumors in nude mice without obvious toxicity. CONCLUSION: Our results indicate that inhibition of endogenous H2S production can significantly inhibit human EC cell growth via promotion of apoptosis and pyroptosis. Endogenous H2S may be a promising therapeutic target in EC cells. Novel inhibitors for H2S-producing enzymes can be designed and developed for EC treatment.

11.
Cancers (Basel) ; 15(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760469

RESUMO

The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.

12.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627222

RESUMO

Mangiferin (MGF), a xanthone derived from Mangifera indica L., initially employed as a nutraceutical, is now being explored extensively for its anticancer potential. Scientists across the globe have explored this bioactive for managing a variety of cancers using validated in vitro and in vivo models. The in vitro anticancer potential of this biomolecule on well-established breast cancer cell lines such as MDA-MB-23, BEAS-2B cells and MCF-7 is closer to many approved synthetic anticancer agents. However, the solubility and bioavailability of this xanthone are the main challenges, and its oral bioavailability is reported to be less than 2%, and its aqueous solubility is also 0.111 mg/mL. Nano-drug delivery systems have attempted to deliver the drugs at the desired site at a desired rate in desired amounts. Many researchers have explored various nanotechnology-based approaches to provide effective and safe delivery of mangiferin for cancer therapy. Nanoparticles were used as carriers to encapsulate mangiferin, protecting it from degradation and facilitating its delivery to cancer cells. They have attempted to enhance the bioavailability, safety and efficacy of this very bioactive using drug delivery approaches. The present review focuses on the origin and structure elucidation of mangiferin and its derivatives and the benefits of this bioactive. The review also offers insight into the delivery-related challenges of mangiferin and its applications in nanosized forms against cancer. The use of a relatively new deep-learning approach to solve the pharmacokinetic issues of this bioactive has also been discussed. The review also critically analyzes the future hope for mangiferin as a therapeutic agent for cancer management.

13.
AAPS PharmSciTech ; 24(6): 168, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552378

RESUMO

The expanding global cancer burden necessitates a comprehensive strategy to promote possible therapeutic interventions. Nanomedicine is a cutting-edge approach for treating cancer with minimal adverse effects. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Eugenol (EGN) were synthesized and evaluated for their anticancer activity against breast cancer cells (MCF-7). The physical, pharmacological, and molecular docking studies were used to characterize these nanoparticles. EGN had been effectively entrapped into hybrid NPs (84 ± 7%). The EGN-ChAgNPs had a diameter of 128 ± 14 nm, a PDI of 0.472 ± 0.118, and a zeta potential of 30.58 ± 6.92 mV. Anticancer activity was measured in vitro using an SRB assay, and the findings revealed that EGN-ChAgNPs demonstrated stronger anticancer activity against MCF-7 cells (IC50 = 14.87 ± 5.34 µg/ml) than pure EGN (30.72 ± 4.91 µg/ml). To support initial cytotoxicity findings, advanced procedures such as cell cycle analysis and genotoxicity were performed. Tumor weight reduction and survival rate were determined using different groups of mice. Both survival rates and tumor weight reduction were higher in the EGN-ChAgNPs (12.5 mg/kg) treated group than in the pure EGN treated group. Based on protein-ligand interactions, it might be proposed that eugenol had a favorable interaction with Aurora Kinase A. It was observed that C9 had the highest HYDE score of any sample, measuring at -6.8 kJ/mol. These results, in conjunction with physical and pharmacological evaluations, implies that EGN-ChAgNPs may be a suitable drug delivery method for treating breast cancer in a safe and efficient way.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas Metálicas , Nanocompostos , Nanopartículas , Animais , Camundongos , Quitosana/farmacologia , Eugenol/farmacologia , Prata/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia
14.
Front Microbiol ; 14: 1188743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323910

RESUMO

The aim of this study was to provide a comparative analysis of chitosan (CH), copper oxide (CuO), and chitosan-based copper oxide (CH-CuO) nanoparticles for their application in the healthcare sector. The nanoparticles were synthesized by a green approach using the extract of Trianthema portulacastrum. The synthesized nanoparticles were characterized using different techniques, such as the synthesis of the particles, which was confirmed by UV-visible spectrometry that showed absorbance at 300 nm, 255 nm, and 275 nm for the CH, CuO, and CH-CuO nanoparticles, respectively. The spherical morphology of the nanoparticles and the presence of active functional groups was validated by SEM, TEM, and FTIR analysis. The crystalline nature of the particles was verified by XRD spectrum, and the average crystallite sizes of 33.54 nm, 20.13 nm, and 24.14 nm were obtained, respectively. The characterized nanoparticles were evaluated for their in vitro antibacterial and antibiofilm potential against Acinetobacter baumannii isolates, where potent activities were exhibited by the nanoparticles. The bioassay for antioxidant activity also confirmed DPPH scavenging activity for all the nanoparticles. This study also evaluated anticancer activities of the CH, CuO, and CH-CuO nanoparticles against HepG2 cell lines, where maximum inhibitions of 54, 75, and 84% were recorded, respectively. The anticancer activity was also confirmed by phase contrast microscopy, where the treated cells exhibited deformed morphologies. This study demonstrates the potential of the CH-CuO nanoparticle as an effective antibacterial agent, having with its antibiofilm activity, and in cancer treatment.

15.
J Investig Med High Impact Case Rep ; 11: 23247096231179448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293945

RESUMO

Gastrointestinal histoplasmosis remains an inconspicuous clinicopathologic entity. It is predominantly considered a protean manifestation of disseminated disease. We hereby delineate a unique case of biopsy-proven isolated colonic histoplasmosis in a patient undergoing methotrexate therapy. Furthermore, we present the first systematic review of the MEDLINE, Google Scholar, Embase, and Scopus databases regarding isolated colonic histoplasmosis in adult patients receiving immunomodulator therapy (IMT). A total of 13 case reports (level of clinical evidence: IV) were identified. The mean age was 55.6 ± 11.1 years, with 9 (69.2%) cases reported in women. Patients with subclinical disease (5, 38.5%) were often incidentally diagnosed by screening colonoscopy. Symptomatic individuals predominantly presented with diarrhea (4, 30.8%), weight loss (3, 23.1%), and/or abdominal pain (3, 23.1%). IMT was mainly administered for liver transplant (4, 30.8%), renal transplant (4, 30.8%), and ulcerative colitis (2, 15.4%). Common colonoscopy features included colonic ulcerations (7, 53.8%), polyps or pseudopolyps (3, 23.1%), and/or mass-like lesions (3, 23.1%). Diagnosis was made by histology of colonic biopsy in 11 (84.6%) and resected specimens in 2 (15.4%) patients. Treatment consisted of a combination of amphotericin B with oral itraconazole in 6 (46.2%), oral itraconazole alone in 5 (38.5%), and amphotericin B alone in 2 (15.4%) patients. Complete clinical recovery was achieved in all patients. This article illustrates that isolated colonic involvement can be the only clinical presentation of histoplasmosis. It may masquerade as other bowel disorders, presenting diagnostic and therapeutic conundrums. Gastroenterologists should rule out colonic histoplasmosis in IMT recipients who develop unexplained colitis symptoms.


Assuntos
Histoplasmose , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Histoplasmose/diagnóstico , Histoplasmose/tratamento farmacológico , Histoplasmose/patologia , Itraconazol/uso terapêutico , Anfotericina B/uso terapêutico , Colo/patologia , Fatores Imunológicos/uso terapêutico
16.
Metabolites ; 13(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37233715

RESUMO

Trillions of diverse microbes reside in the gut and are deeply interwoven with the human physiological process, from food digestion, immune system maturation, and fighting invading pathogens, to drug metabolism. Microbial drug metabolism has a profound impact on drug absorption, bioavailability, stability, efficacy, and toxicity. However, our knowledge of specific gut microbial strains, and their genes that encode enzymes involved in the metabolism, is limited. The microbiome encodes over 3 million unique genes contributing to a huge enzymatic capacity, vastly expanding the traditional drug metabolic reactions that occur in the liver, manipulating their pharmacological effect, and, ultimately, leading to variation in drug response. For example, the microbial deactivation of anticancer drugs such as gemcitabine can lead to resistance to chemotherapeutics or the crucial role of microbes in modulating the efficacy of the anticancer drug, cyclophosphamide. On the other hand, recent findings show that many drugs can shape the composition, function, and gene expression of the gut microbial community, making it harder to predict the outcome of drug-microbiota interactions. In this review, we discuss the recent understanding of the multidirectional interaction between the host, oral medications, and gut microbiota, using traditional and machine-learning approaches. We analyze gaps, challenges, and future promises of personalized medicine that consider gut microbes as a crucial player in drug metabolism. This consideration will enable the development of personalized therapeutic regimes with an improved outcome, ultimately leading to precision medicine.

17.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110702

RESUMO

As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.


Assuntos
Óleos Voláteis , Plantas Medicinais , Pogostemon , Quercetina , Óleos Voláteis/farmacologia , Óleos Voláteis/química
18.
J Biomol Struct Dyn ; 41(23): 14358-14371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36898855

RESUMO

Fibroblast growth factor receptors 1 (FGFR1) is an emerging target for the development of anticancer drugs. Uncontrolled expression of FGFR1 is strongly associated with a number of different types of cancers. Apart from a few FGFR inhibitors, the FGFR family members have not been thoroughly studied to produce clinically effective anticancer drugs. The application of proper computational techniques may aid in understanding the mechanism of protein-ligand complex formation, which may provide a better notion for developing potent FGFR1 inhibitors. In this study, a variety of computational techniques, including 3D-QSAR, flexible docking and MD simulation followed by MMGB/PBSA, H-bonds and distance analysis, have been performed to systematically explore the binding mechanism of pyrrolo-pyrimidine derivatives against FGFR1. The 3D-QSAR model was generated to deduce the structural determinants of FGFR1 inhibition. The high q2 and r2 values for the CoMFA and CoMSIA models indicated that the created 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The computed binding free energies (MMGB/PBSA) for the selected compounds were consistent with the ranking of their experimental binding affinities against FGFR1. Furthermore, per-residue energy decomposition analysis revealed that the residues Lys514 in catalytic region, Asn568, Glu571 in solvent accessible portion and Asp641 in DFG motif exhibited a strong tendency to mediate ligand-protein interactions through the hydrogen bonding and Van Der Waals interactions. These findings may benefit researchers in gaining better knowledge of FGFR1 inhibition and may serve as a guideline for the development of novel and highly effective FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Relação Quantitativa Estrutura-Atividade
19.
Antibiotics (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830201

RESUMO

Organic selenocyanates (RSeCN) are among the most reactive and biologically active Se species, often exhibiting a pronounced cytotoxic activity against mammalian cells and microorganisms. Various aromatic selenocyanates have been synthesized and, similar to some of the most Reactive Sulfur Species (RSS), such as allicin, found to be active against a range of bacteria, including Escherichia coli, Pseudomonas syringae and Micrococcus luteus, and fungi, including Verticillium dahlia, Verticillium longisporum, Alternaria brassicicola, and Botrytis cinerea, even via the gas phase. The highest antimicrobial activity has been observed for benzyl selenocyanate, which inhibited the growth of all bacteria considerably, even at the lowest tested concentration of 50 µM. Notably, neither the analogues thiocyanate (BTC) nor isothiocyanate (BITC) show any of these activities, rendering this selenium motif rather special in activity and mode of action. Eventually, these findings advocate a range of potential applications of organic selenocyanates in medicine and agriculture.

20.
J Enzyme Inhib Med Chem ; 38(1): 2163394, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629454

RESUMO

Deposition of hydroxyapatite (HA) or alkaline phosphate crystals on soft tissues causes the pathological calcification diseases comprising of end-stage osteoarthritis (OA), ankylosing spondylitis (AS), medial artery calcification and tumour calcification. The pathological calcification is symbolised by increased concentration of tissue non-specific alkaline phosphatase (TNAP). An efficient therapeutic strategy to eradicate these diseases is required, and for this the alkaline phosphatase inhibitors can play a potential role. In this context a series of novel quinolinyl iminothiazolines was synthesised and evaluated for alkaline phosphatase inhibition potential. All the compounds were subjected to DFT studies where N-benzamide quinolinyl iminothiazoline (6g), N-dichlorobenzamide quinolinyl iminothiazoline (6i) and N-nitrobenzamide quinolinyl iminothiazoline (6j) were found as the most reactive compounds. Then during the in-vitro testing, the compound N-benzamide quinolinyl iminothiazoline (6g) exhibited the maximum alkaline phosphatase inhibitory effect (IC50 = 0.337 ± 0.015 µM) as compared to other analogues and standard KH2PO4 (IC50 = 5.245 ± 0.477 µM). The results were supported by the molecular docking studies, molecular dynamics simulations and kinetic analysis which also revealed the inhibitory potential of compound N-benzamide quinolinyl iminothiazoline (6g) against alkaline phosphatase. This compound can be act as lead molecule for the synthesis of more effective inhibitors and can be suggested to test at the molecular level.


Assuntos
Fosfatase Alcalina , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Cinética , Fosfatase Alcalina/metabolismo , Inibidores Enzimáticos/química , Benzamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA