Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38408272

RESUMO

This review explores the repercussions of mycotoxin contamination in food and feed, emphasising potential threats to agriculture, animal husbandry and public health. The primary objective is to make a comprehensive assessment of the neurotoxic consequences of mycotoxin exposure, an aspect less explored in current literature. Emphasis is placed on prominent mycotoxins, including aflatoxins, fumonisins, zearalenone (ZEA) and ochratoxins, known for inducing acute and chronic diseases such as liver damage, genetic mutation and cancer. To elucidate the effects, animal studies were conducted, revealing an association between mycotoxin exposure and neurological damage. This encompasses impairments in learning and memory, motor alterations, anxiety and depression. The underlying mechanisms involve oxidative stress, disrupting the balance between reactive oxygen species (ROS) and antioxidant capacity. This oxidative stress is linked to neuronal damage, brain inflammation, neurochemical imbalance, and subsequent behavioural changes. The review underscores the need for preventive measures against mycotoxin exposure. While complete avoidance is ideal, exploration into the potential use of antioxidants as a viable solution is discussed, given the widespread contamination of many food products. Specifically, the protective role of natural compounds, such as polyphenols, is highlighted, showcasing their efficacy in mitigating mycotoxicosis in the central nervous system (CNS), as evidenced by findings in various animal models. In summary, countering mycotoxin-induced neurotoxicity requires a multifaceted approach. The identified natural compounds show promise, but their practical use hinges on factors like bioavailability, toxicity and understanding their mechanisms of action. Extensive research is crucial, considering the diverse responses to different mycotoxins and neurological conditions. Successful implementation relies on factors such as the specific mycotoxin(s) involved and achievable effective concentrations. Further research and clinical trials are imperative to establish the safety and efficacy of these compounds in practical applications.


Assuntos
Micotoxinas , Ocratoxinas , Zearalenona , Animais , Micotoxinas/toxicidade , Micotoxinas/análise , Contaminação de Alimentos/análise , Ocratoxinas/análise , Zearalenona/análise , Ração Animal/análise , Estresse Oxidativo
3.
Adv Pharm Bull ; 13(1): 88-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721805

RESUMO

Purpose: Cancer is a global public health problem that affects millions of people every year and the immunotherapy has been a promising alternative for its treatment. The aim of this study was to gather data concerning the efficacy and safety of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), emphasizing pembrolizumb, a humanized antibody. This study also reports the role of immunotherapy in cancer treatments, contemplating the anti-CTLA4, anti-PD-L1 and anti PD-1 action in lymphocyte T cells. Methods: A bibliographic review was performed using Pubmed, SCIELO and SCOPUS databases, screening the scientific studies published within the last 5 years. Results: Seven clinical trials were selected to discuss the benefits of pembrolizumab as NSCLC therapy in untreated and previously treated patients, considering or not the tumor proportion score (TPS). It was found that NSCLC occurs with great frequency in Brazil and worldwide, presenting a poor prognosis due to its late diagnosis in most cases. Immunotherapy is a promising treatment strategy for NSCLC because its benefits overcome its risks compared to other therapies. Besides, the studies evidenced the efficiency of pembrolizumab as monotherapy or in association whit chemotherapy, in the first or second line of treatment and, additionally, patient's whit TPS ≥ 50% seem to have a greater benefit from the treatment. Conclusion: The data collected herein showed that pembrolizumab is a very promising, effective, and safe treatment option against NSCLC. Lastly, it is important to highlight the relevance of review's studies, since they are easy-to-read materials, collecting relevant information on a subject.

4.
Anticancer Agents Med Chem ; 22(14): 2507-2516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35236272

RESUMO

BACKGROUND: The discovery of trastuzumab as anti-HER2 therapy has markedly improved disease control and the survival rates of patients with HER2+ breast cancer. However, as trastuzumab is considered a complex molecule, the cost of production is usually elevated, which significantly affects health budgets and limits the treatment access for patients who live in underdeveloped countries. Recently, trastuzumab production has become more accessible and sustainable due to the patents' expiration, allowing biosimilar versions of trastuzumab to be developed. OBJECTIVE: Our main goal was to shed more light on the uses of biosimilars in breast cancer treatment, emphasizing trastuzumab. METHOD: An integrative search was carried out on the PubMed, Scielo, Web of Science, and SCOPUS databases using the terms "biosimilar," "breast cancer," "monoclonal antibody," and "trastuzumab." The time range included scientific articles published from 2015 to 2021. RESULTS AND DISCUSSION: The bibliographic survey showed the complexities in biological medicine manufacturing and how the monoclonal antibody's therapy with trastuzumab improved the patients' life expectancy, revolutionizing HER2+ breast cancer treatment. Nonetheless, despite its benefits, trastuzumab generates certain restrictions, especially from the economic perspective. Trastuzumab biosimilars have high selectivity and rarely cause adverse effects compared to conventional chemotherapy. CONCLUSION: This study shows that trastuzumab biosimilars improve patients' accessibility to breast cancer treatment through a safe and effective therapy compared to the drug reference.


Assuntos
Medicamentos Biossimilares , Neoplasias da Mama , Anticorpos Monoclonais/uso terapêutico , Medicamentos Biossimilares/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Receptor ErbB-2 , Trastuzumab/uso terapêutico
5.
Chem Biol Interact ; 348: 109635, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506763

RESUMO

Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 µg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1ß) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.


Assuntos
Aflatoxina B1/toxicidade , Citoproteção/efeitos dos fármacos , Fígado/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
6.
AAPS PharmSciTech ; 21(8): 307, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33151442

RESUMO

Diphenyl diselenide [(PhSe)2] is a pleiotropic pharmacological agent, but it has low aqueous solubility. The nanoencapsulation of (PhSe)2 allowed the preparation of an aqueous formulation as well as potentiated its in vitro antitumor effect and the effectiveness in a preclinical model of glioblastoma when administered by the intragastric route. Thus, aiming at maximizing the therapeutic potential of (PhSe)2, the present study designed a pegylated-formulation intending to intravenous administration of the (PhSe)2 as a new approach for glioma therapy. The poly(Ɛ-caprolactone) nanocapsules containing (PhSe)2 were physically coated with polyethyleneglycol (PEG) using the preformed polymer interfacial deposition technique and evaluated through physicochemical, morphological, spectroscopic, and thermal characteristics. Hemocompatibility was determined by the in vitro hemolysis test and cytotoxicity assays were performed in astrocytes and glioma C6 cells (10-100 µM). The pegylated-nanocapsules had an average diameter of 218 ± 25 nm, polydispersity index of 0.164 ± 0.046, zeta potential of - 8.1 ± 1.6 mV, pH 6.0 ± 0.09, (PhSe)2 content of 102.00 ± 3.57%, and encapsulation efficiency around 98%. Besides, the (PhSe)2 pegylated-nanocapsules were spherical, presented absence of chemical interaction among the constituents, and showed higher thermal stability than the non-encapsulated materials. PEG-coated nanocapsules did not cause hemolytic effect while formulations without PEG induced a hemolysis rate above 10%. Moreover, pegylated-nanocapsules had superior in vitro antiglioma effect in comparison to free compound (IC50: 24.10 µM and 74.83 µM, respectively). Therefore, the (PhSe)2-loaded pegylated-nanocapsule suspensions can be considered a hemocompatible formulation for the glioma treatment by the intravenous route.


Assuntos
Antineoplásicos/administração & dosagem , Derivados de Benzeno/administração & dosagem , Materiais Biocompatíveis , Glioma/tratamento farmacológico , Nanocápsulas/química , Compostos Organosselênicos/administração & dosagem , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Astrócitos/efeitos dos fármacos , Derivados de Benzeno/química , Compostos Organosselênicos/química , Solubilidade
7.
Invest New Drugs ; 38(3): 662-674, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31264068

RESUMO

The aim of this study was to further evaluate the antitumoral effect of (PhSe)2-loaded polymeric nanocapsules (NC (PhSe)2) against a resistant melanoma cell line (SK-Mel-103) and develop a xanthan gum-based hydrogel intending the NC (PhSe)2 cutaneous application. For the in vitro evaluation, cells were incubated with free (PhSe)2 or NC (PhSe)2 (0.7-200 µM) and after 48 h the MTT assay, propidium iodide uptake (necrosis marker) and nitrite levels were assessed. The hydrogels were developed by thickening of the NC (PhSe)2 suspension or (PhSe)2 solution with xanthan gum and characterized in terms of average diameter, polydispersity index, pH, drug content, spreadability, rheological profiles and in vitro permeation in human skin. The results showed that NC (PhSe)2 provided a superior antitumoral effect in comparison to free (PhSe)2 (IC50 value of 47.43 µM and 65.05 µM, respectively) and increased the nitrite content. Both compound forms induced propidium iodide uptake, suggesting a necrosis-related pathway could be involved in the cytotoxic action of (PhSe)2. All hydrogels showed pH values around 7, drug content close to the theoretical values (5 mg/g) and mean diameter in the nanometric range. Besides, formulations were classified as non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor. Skin permeation studies revealed that the compound content was higher for the nano-based hydrogel in the dermis layer, demonstrating its superior permeation, achieved by the compound encapsulation. It is the first report on an adequate formulation development for cutaneous application of NC (PhSe)2 that could be used as an adjuvant treatment in melanoma therapy.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Melanoma Experimental/tratamento farmacológico , Nanocápsulas/química , Compostos Organosselênicos/farmacologia , Polissacarídeos Bacterianos/química , Animais , Antineoplásicos/química , Derivados de Benzeno/química , Linhagem Celular , Humanos , Camundongos , Compostos Organosselênicos/química , Permeabilidade/efeitos dos fármacos , Polímeros/química
8.
Braz. arch. biol. technol ; 63: e20200087, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132188

RESUMO

Abstract In the current study, nanocapsules (NC) formulations containing a co-load of clotrimazole (C), a highly prescribed antifungal drug, and diphenyl diselenide [(PhSe)2], an organoselenium compound with a promising scope of pharmacological actions, were prepared. Formulations were characterized as well as the potential toxicity, antioxidant action, and antifungal effect were assessed using in vitro techniques. The NCs were prepared employing Eudragit® RS 100 as polymeric wall and medium chain triglycerides or virgin coconut oil (CO) as core. All NC suspensions had pH around acid range, compound content close to theoretical value (1 mg/mL/drug), average diameter in nanometric range, positive values of zeta potential as well as high encapsulation efficacy and mucoadhesive property. Physicochemical stability was performed over a 30-day period and showed no modification in the aforementioned parameters to all samples. Preliminary screening of toxicological potential performed by the hen's egg test chorioallantoic membrane technique classified the formulations as non-irritant. The DPPH radical assay revealed that nanoencapsulated compounds had superior antioxidant action in comparison to their free forms (concentration range tested 1.0-25.0 µg/mL). Importantly, the formulation composed of CO and containing C and (PhSe)2 showed the highest antioxidant potential and was selected for further investigation regarding antifungal effect against some Candida spp strains. Results of in vitro antifungal assay demonstrated that the C and (PhSe)2 co-encapsulation had a minimum inhibitory concentration (MIC) values around 60. Thus, our study supplies additional data about advantages achieved by encapsulating active compounds.


Assuntos
Derivados de Benzeno/farmacologia , Candida/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Clotrimazol/farmacologia , Nanocápsulas , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Testes de Sensibilidade Microbiana
9.
AAPS PharmSciTech ; 20(2): 49, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617655

RESUMO

3,3'-Diindolylmethane (DIM) is a phytochemical that presents health benefits (antitumor, antioxidant, and anti-inflammatory effects). However, it is water insoluble and thermo- and photolabile, restraining its pharmaceutical applications. As a strategy to overcome such limitations, this study aimed the development and characterization of DIM-loaded nanocapsules (NCs) prepared with different compositions as well as the in vitro assessment of scavenging activity and cytotoxicity. The formulations were obtained using the interfacial deposition of preformed polymer method and were composed by Eudragit® RS100 or ethylcellulose as polymeric wall and primula or apricot oil as the core. All the formulations had adequate physicochemical characteristics: nanometric size (around 190 nm), low polydispersity index (< 0.2), pH value at acid range, high values of zeta potential, drug content, and encapsulation efficiency (~ 100%). Besides, nanoencapsulation protected DIM against UVC-induced degradation and increased the scavenging activity assessed by the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) and 1-1-diphenyl-2-picrylhydrazyl methods. The developed DIM-loaded nanocapsules were further evaluated regarding the in vitro release profile and cytotoxicity against a human glioblastoma cell line (U87 cells). The results demonstrated that the nanoencapsulation promoted a sustained release of the bioactive compound (in the range of 58-78% after 84 h) in comparison to its free form (86% after 12 h), as well as provided a superior cytotoxic effect against the U87 cells in the highest concentrations. Therefore, our results suggest that nanoencapsulation could be a promising approach to overcome the DIM physicochemical limitations and potentialize its biological properties.


Assuntos
Anticarcinógenos/química , Citotoxinas/química , Sequestradores de Radicais Livres/química , Glioma , Indóis/química , Nanocápsulas/química , Estimulação Luminosa/efeitos adversos , Anticarcinógenos/administração & dosagem , Anticarcinógenos/metabolismo , Linhagem Celular Tumoral , Citotoxinas/administração & dosagem , Citotoxinas/metabolismo , Estabilidade de Medicamentos , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/metabolismo , Glioma/metabolismo , Humanos , Indóis/administração & dosagem , Indóis/metabolismo , Nanocápsulas/administração & dosagem , Tamanho da Partícula , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Óleos de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA