Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102902, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642178

RESUMO

The programmed cell death protein-1 (PD-1) is highly expressed on the surface of antigen-specific exhausted T cells and, upon interaction with its ligand PD-L1, can result in inhibition of the immune response. Anti-PD-1 treatment has been shown to extend survival and result in durable responses in several cancers, yet only a subset of patients benefit from this therapy. Despite the implication of metabolic alteration following cancer immunotherapy, mechanistic associations between antitumor responses and metabolic changes remain unclear. Here, we used desorption electrospray ionization mass spectrometry imaging to examine the lipid profiles of tumor tissue from three syngeneic murine models with varying treatment sensitivity at the baseline and at three time points post-anti-PD-1 therapy. These imaging experiments revealed specific alterations in the lipid profiles associated with the degree of response to treatment and allowed us to identify a significant increase of long-chain polyunsaturated lipids within responsive tumors following anti-PD-1 therapy. Immunofluorescence imaging of tumor tissues also demonstrated that the altered lipid profile associated with treatment response is localized to dense regions of tumor immune infiltrates. Overall, these results indicate that effective anti-PD-1 therapy modulates lipid metabolism in tumor immune infiltrates, and we thereby propose that further investigation of the related immune-metabolic pathways may be useful for better understanding success and failure of anti-PD-1 therapy.


Assuntos
Anticorpos Monoclonais , Antígeno B7-H1 , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Imunoterapia , Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos T/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA