Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 125(19): 2937-47, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833958

RESUMO

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg) are critical elements for maintaining immune tolerance, for instance to exogenous antigens that are introduced during therapeutic interventions such as cell/organ transplant or gene/protein replacement therapy. Coadministration of antigen with rapamycin simultaneously promotes deletion of conventional CD4(+) T cells and induction of Treg. Here, we report that the cytokine FMS-like receptor tyrosine kinase ligand (Flt3L) enhances the in vivo effect of rapamycin. This occurs via selective expansion of plasmacytoid dendritic cells (pDCs), which further augments the number of Treg. Whereas in conventional DCs, rapamycin effectively blocks mammalian target of rapamycin (mTOR) 1 signaling induced by Flt3L, increased mTOR1 activity renders pDCs more resistant to inhibition by rapamycin. Consequently, Flt3L and rapamycin synergistically promote induction of antigen-specific Treg via selective expansion of pDCs. This concept is supported by the finding that Treg induction is abrogated upon pDC depletion. The combination with pDCs and rapamycin is requisite for Flt3L/antigen-induced Treg induction because Flt3L/antigen by itself fails to induce Treg. As co-administering Flt3L, rapamycin, and antigen blocked CD8(+) T-cell and antibody responses in models of gene and protein therapy, we conclude that the differential effect of rapamycin on DC subsets can be exploited for improved tolerance induction.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Proteínas de Membrana/metabolismo , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Sinergismo Farmacológico , Citometria de Fluxo , Humanos , Tolerância Imunológica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Case Rep Vasc Med ; 2013: 386961, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24369523

RESUMO

Internal jugular phlebectasia presents as a soft cystic mass in the neck that appears on straining. We present a case of a 7-year-old girl who presented with a painless soft cystic mass in the neck associated with hoarseness of voice. Based on clinical examination and CT image, diagnosis of right internal jugular phlebectasia was made.

3.
Int J Cancer ; 130(2): 328-37, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21365650

RESUMO

Cancer stem cells (CSCs) are initiating cells in colorectal cancer (CRC). Colorectal tumours undergo epithelial to mesenchymal transition (EMT)-like processes at the invasive front, enabling invasion and metastasis, and recent studies have linked this process to the acquisition of stem cell-like properties. It is of fundamental importance to understand the molecular events leading to the establishment of cancer initiating cells and how these mechanisms relate to cellular transitions during tumourigenesis. We use an in vitro system to recapitulate changes in CRC cells at the invasive front (mesenchymal-like cells) and central mass (epithelial-like cells) of tumours. We show that the mesoderm inducer BRACHYURY is expressed in a subpopulation of CRC cells that resemble invasive front mesenchymal-like cells, where it acts to impose characteristics of CSCs in a fully reversible manner, suggesting reversible formation and modulation of such cells. BRACHYURY, itself regulated by the oncogene ß-catenin, influences NANOG and other 'stemness' markers including a panel of markers defining CRC-CSC whose presence has been linked to poor patient prognosis. Similar regulation of NANOG through BRACHYURY was observed in other cells lines, suggesting this might be a pathway common to cancer cells undergoing mesenchymal transition. We suggest that BRACHYURY may regulate NANOG in mesenchymal-like CRC cells to impose a 'plastic-state', allowing competence of cells to respond to signals prompting invasion or metastasis.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas Fetais/genética , Células-Tronco Neoplásicas/fisiologia , Proteínas com Domínio T/genética , Antígeno AC133 , Antígenos CD/biossíntese , Antígenos CD/genética , Carcinoma Embrionário/genética , Carcinoma Embrionário/metabolismo , Carcinoma Embrionário/patologia , Moléculas de Adesão Celular Neuronais/biossíntese , Moléculas de Adesão Celular Neuronais/genética , Contagem de Células , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas Fetais/biossíntese , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicoproteínas/biossíntese , Glicoproteínas/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Receptores de Hialuronatos/biossíntese , Receptores de Hialuronatos/genética , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/genética , Proteínas com Domínio T/biossíntese , beta Catenina/biossíntese , beta Catenina/genética
4.
Front Microbiol ; 2: 244, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22279442

RESUMO

Intramuscular (IM) administration of an adeno-associated viral (AAV) vector represents a simple and safe method of gene transfer for treatment of the X-linked bleeding disorder hemophilia B (factor IX, F.IX, deficiency). However, the approach is hampered by an increased risk of immune responses against F.IX. Previously, we demonstrated that the drug cocktail of immune suppressants rapamycin, IL-10, and a specific peptide (encoding a dominant CD4(+) T cell epitope) caused an induction of regulatory T cells (Treg) with a concomitant apoptosis of antigen-specific effector T cells (Nayak et al., 2009). This protocol was effective in preventing inhibitory antibody formation against human F.IX (hF.IX) in muscle gene transfer to C3H/HeJ hemophilia B mice (with targeted F9 gene deletion). Here, we show that this protocol can also be used to reverse inhibitor formation. IM injection of AAV1-hF.IX vector resulted in inhibitors of on average 8-10 BU within 1 month. Subsequent treatment with the tolerogenic cocktail accomplished a rapid reduction of hF.IX-specific antibodies to <2 BU, which lasted for >4.5 months. Systemic hF.IX expression increased from undetectable to >200 ng/ml, and coagulation times improved. In addition, we developed an alternative prophylactic protocol against inhibitor formation that did not require knowledge of T cell epitopes, consisting of daily oral administration of rapamycin for 1-month combined with frequent, low-dose intravenous injection of hF.IX protein. Experiments in T cell receptor transgenic mice showed that the route and dosing schedule of drug administration substantially affected Treg induction. When combined with intravenous antigen administration, oral delivery of rapamycin had to be performed daily in order to induce Treg, which were suppressive and phenotypically comparable to natural Treg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA