Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764521

RESUMO

Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.


Assuntos
Aphanomyces , Animais , Aphanomyces/genética , Peixe-Zebra , Fungos , Peptídeos , Fatores de Virulência
2.
ACS Omega ; 8(21): 18543-18553, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273629

RESUMO

One of the most common diseases in women is breast cancer, which has the highest death globally. Surgery, chemotherapy, hormone treatments, and radiation are the current treatment options for breast cancer. However, these options have several adverse side effects. Recently, peptide-based drugs have gained attention as anticancer therapy. Studies report that peptides from biological toxins such as venom and virulent pathogenic molecules have potential therapeutic effects against multiple diseases, including cancers. This study reports on the in vitro anticancer effect of a short peptide, PS9, derived from a virulent protein, glycosyl hydrolase, of an aquatic fungus, Aphanomyces invadans. This peptide arrests MCF-7 proliferation by regulating intercellular reactive oxygen species (ROS) and apoptotic pathways. Based on the potential for the anticancer effect of PS9, from the in silico analysis, in vitro analyses using MCF-7 cells were executed. PS9 showed a dose-dependent activity; its IC50 value was 25.27-43.28 µM at 24 h. The acridine orange/ethidium bromide (AO/EtBr) staining, to establish the status of apoptosis in MCF-7 cells, showed morphologies for early and late apoptosis and necrotic cell death. The 2,7-dichlorodihydrofluorescein diacetate (DCFDA) staining and biochemical analyses showed a significant increase in reactive oxygen species (ROS). Besides, PS9 has been shown to regulate the caspase-mediated apoptotic pathway. PS9 is nontoxic, in vitro, and in vivo zebrafish larvae. Together, PS9 may have an anticancer effect in vitro.

3.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364155

RESUMO

In this study, the anti-cancer and anti-inflammatory activities of PS14, a short peptide derived from the cellulase binding domain of pathogenic fungus, Aphanomyces invadans, have been evaluated, in vitro and in vivo. Bioinformatics analysis of PS14 revealed the physicochemical properties and the web-based predictions, which indicate that PS14 is non-toxic, and it has the potential to elicit anti-cancer and anti-inflammatory activities. These in silico results were experimentally validated through in vitro (L6 or Hep-2 cells) and in vivo (zebrafish embryo or larvae) models. Experimental results showed that PS14 is non-toxic in L6 cells and the zebrafish embryo, and it elicits an antitumor effect Hep-2 cells and zebrafish embryos. Anticancer activity assays, in terms of MTT, trypan blue and LDH assays, showed a dose-dependent inhibitory effect on cell proliferation. Moreover, in the epithelial cancer cells and zebrafish embryos, the peptide challenge (i) caused significant changes in the cytomorphology and induced apoptosis; (ii) triggered ROS generation; and (iii) showed a significant up-regulation of anti-cancer genes including BAX, Caspase 3, Caspase 9 and down-regulation of Bcl-2, in vitro. The anti-inflammatory activity of PS14 was observed in the cell-free in vitro assays for the inhibition of proteinase and lipoxygenase, and heat-induced hemolysis and hypotonicity-induced hemolysis. Together, this study has identified that PS14 has anti-cancer and anti-inflammatory activities, while being non-toxic, in vitro and in vivo. Future experiments can focus on the clinical or pharmacodynamics aspects of PS14.


Assuntos
Aphanomyces , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Hemólise , Apoptose , Células Epiteliais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Peptídeos/farmacologia , Celulose/metabolismo , Embrião não Mamífero
4.
Toxicon ; 210: 100-108, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35217022

RESUMO

Peptide-based drug development is an emerging and promising approach in cancer therapeutics. The present study focuses on understanding the mechanism of MP12 peptide (MDNHVCIPLCPP) derived from cysteine-rich trypsin inhibitor protein of virulence factor of pathogenic fungus Aphanomyces invadans. MP12 is involved in antiproliferative activity against the human laryngeal epithelial cell (Hep-2), demonstrated in this study. MP12 sequence showed a significant binding score and has multiple hydrogen bond interactions with the proteins that play a vital role in apoptotic pathways such as Bcl-2, caspase-3, caspase-7, and XIAP. Based on the bioinformatics characterization and molecular docking result, further study was focused on MP12 antiproliferative activity. The peptide showed a dose-dependent inhibition against Hep-2 cell line proliferation, analyzed over MTT and neutral red uptake assays. The IC50 value of the MP12 peptide was calculated based on the antiproliferative property (24.7 ± 0.34 µM). MP12 treated Hep-2 cells showed significant shrinkage in cell morphology compared to untreated cells, inhibiting the cell cycle. The gene expression analysis validated that the MP12 significantly upregulates the caspase-3, caspase-7, and caspase-9 genes. The developmental toxicity study using zebrafish embryos as in vivo model proved that the MP12 is nontoxic. Based on the obtained results, we proposed that the peptide MP12 derived from cysteine-rich trypsin inhibitor protein of virulence molecule of pathogenic fungus have a potential antiproliferative activity. However, further clinical trials need to be focused on the mechanism and therapeutic application against laryngeal cancer.


Assuntos
Aphanomyces , Peixe-Zebra , Animais , Aphanomyces/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisteína , Células Epiteliais , Fungos , Humanos , Simulação de Acoplamento Molecular , Inibidores da Tripsina , Fatores de Virulência
5.
Int J Biol Macromol ; 166: 641-653, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137391

RESUMO

The antioxidant role of sulfite reductase (SiR) derived from Arthrospira platensis (Ap) was identified through a short peptide, TL15. The study showed that the expression of ApSiR was highly expressed on day ten due to sulfur deprived stress in Ap culture. TL15 peptide exhibited strong antioxidant activity when evaluated using antioxidant assays in a concentration ranging from 7.8 and 125 µM. Further, the cytotoxicity of TL15 peptide was investigated, even at the higher concentration (250 µM), TL15 did not exhibit any toxicity, when tested in vitro using human leucocytes. Moreover, a potential reduction in reactive oxygen species (ROS) production was observed due to the treatment of TL15 peptide (>15.6 µM) to H2O2 exposed leucocytes. For the in vivo assessment of TL15 toxicity and antioxidant ability, experiments were performed in zebrafish (Danio rerio) larvae to analyse the developmental toxicity of TL15 peptide. Results showed that, exposure to TL15 peptide in tested concentrations ranging from 10, 20, 40, and 80 µM, did not affect the development and physiological parameters of the zebrafish embryo/larvae such as morphology, survival, hatching and heart rate. Fluorescent assay was performed using DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) to examine the production of intracellular reactive oxygen species (ROS) in zebrafish treated with TL15 peptide during the embryo-larval stages. Fluorescent images showed that pre-treatment with TL15 peptide to attenuate the H2O2 induced ROS levels in the zebrafish larvae in a dose-dependent manner. Further to uncover the underlying biochemical and antioxidant mechanism, the enzyme activity of superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) levels were studied in zebrafish larvae. TL15 pre-treated groups showed enhanced antioxidant enzyme activity, while the hydrogen peroxide (H2O2) exposed larvae showed significantly diminished activity. Overall results from the study revealed that, TL15 act as a potential antioxidant molecule with dose-specific antioxidant property. Thus, TL15 peptide could be an effective and promising source for biopharmaceutical applications.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Radicais Livres/metabolismo , Oxidantes/toxicidade , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peptídeos/farmacologia , Spirulina/enzimologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Morte Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Radical Hidroxila/química , Larva/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Modelos Animais , Peptídeos/química , Picratos/química , Ácidos Sulfônicos/química , Superóxidos/metabolismo , Peixe-Zebra/embriologia
6.
Mol Biol Rep ; 47(3): 1821-1834, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989428

RESUMO

An antioxidant molecule namely, adenosyl homocysteinase (AHc) was identified from the earlier constructed transcriptome database of Spirulina, where it was cultured in a sulphur deprived condition. From the AHc protein, a small peptide NL13 was identified using bioinformatics tools and was predicted to have antioxidant property. Further, the peptide was synthesised and its antioxidant mechanism was addressed at molecular level. NL13 was subjected to various antioxidant assays including DPPH assay, HARS assay, SARS Assay, NO assay and ABTS assay, where NL13 exhibited significant (P < 0.05) potential antioxidant activity compared to its antioxidant control, Trolox. Cytotoxicity was performed on Human whole blood and the cell viability was performed on VERO fibroblast cells. In both assays, it was found that NL13 did not exhibit any cytotoxic effect towards the cells. Further, the intracellular ROS was performed on Multimode reader followed by imaging on fluorescence microscope which showed scavenging activity even at lower concentration of NL13 (31.2 µM). An effective wound healing property of NL13 on VERO cells was confirmed by analysing the cell migration rate at two different time intervals (24 and 48 h). Overall, the study shows that NL13 peptide scavenges the intracellular oxidative stress.


Assuntos
Adenosil-Homocisteinase/química , Antioxidantes/farmacologia , Fibroblastos/citologia , Peptídeos/farmacologia , Spirulina/enzimologia , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/síntese química , Antioxidantes/química , Proteínas de Bactérias/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Chlorocebus aethiops , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Peptídeos/síntese química , Peptídeos/química , Espécies Reativas de Oxigênio/metabolismo , Células Vero
7.
Braz. J. Pharm. Sci. (Online) ; 55: e18201, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011651

RESUMO

Oxidative stress plays the central role in the pathogenesis and progression of diabetic complications. The present study aims to investigate the beneficial effect of oral administration of flavone baicalein in streptozotocin-nicotinamide (STZ-NA) induced diabetic rats by measuring oxidative stress markers, antioxidant enzyme activities and expression analysis of antioxidant genes. Experimental diabetes was induced by a single intraperitoneal (i.p.) injection of STZ (55 mg /kg b.wt), 15 min after the i.p. administration of NA. At the end of the experimental period, thiobarbituric acid reactive substances (TBARS), activities of antioxidant enzymes and expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GPx) were measured in diabetic rats along with serum biochemical parameters namely total cholesterol (TC), total triglyceride (TG), aspartate transaminase (AST) alanine transaminase (ALT) and glycosylated hemoglobin (HbA1c). Oral administration of baicalein (40 mg/kg b.wt/day) demonstrated a significant ameliorative effect on all studied biochemical and oxidative stress parameters. Biochemical findings were corroborated by qPCR expression analysis which showed significant upregulation of antioxidant genes in diabetic rats. These results suggest that baicalein supplementation may reduce diabetes and its complications by suppressing oxidative stress and enhancing gene expression and antioxidant enzyme activities in diabetic rats.


Assuntos
Animais , Masculino , Pré-Escolar , Ratos , Expressão Gênica , Niacinamida/farmacologia , Flavonas/análise , Diabetes Mellitus Experimental/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Glibureto/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA