Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101191, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352271

RESUMO

Despite the implementation of lifesaving newborn screening programs and a galactose-restricted diet, many patients with classic galactosemia develop long-term debilitating neurological deficits and primary ovarian insufficiency. Previously, we showed that the administration of human GALT mRNA predominantly expressed in the GalT gene-trapped mouse liver augmented the expression of hepatic GALT activity, which decreased not only galactose-1 phosphate (gal-1P) in the liver but also peripheral tissues. Since each peripheral tissue requires distinct methods to examine the biomarker and/or GALT effect, this highlights the necessity for alternative strategies to evaluate the overall impact of therapies. In this study, we established that whole-body galactose oxidation (WBGO) as a robust, noninvasive, and specific method to assess the in vivo pharmacokinetic and pharmacodynamic parameters of two experimental gene-based therapies that aimed to restore GALT activity in a mouse model of galactosemia. Although our results illustrated the long-lasting efficacy of AAVrh10-mediated GALT gene transfer, we found that GALT mRNA therapy that targets the liver predominantly is sufficient to sustain WBGO. The latter could have important implications in the design of novel targeted therapy to ensure optimal efficacy and safety.

2.
Nat Commun ; 12(1): 3090, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035281

RESUMO

Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio/terapia , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Células HeLa , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Resultado do Tratamento , Triglicerídeos/metabolismo
3.
Biochim Biophys Acta ; 1838(10): 2698-707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25019684

RESUMO

VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties. Results show that in the presence of calcium, N-myristoylation significantly increases the kinetic rate of VILIP adsorption to the membrane. Additionally, the proteins bind to negatively charged phospholipids independently of the conjugated myristate moiety. Besides the regulatory effect of calcium on the rate of binding presumably due to exposure of the myristoyl moiety ascribed to their putative 'calcium-myristoyl switch', VILIP-1 and -3 also engage specific interactions with biomimetic membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2). The presence of PIP2 increases the membrane association rates of both VILIPs. Taken together, these results show the major kinetic role of N-myristoylation for membrane binding, and highlight the critical role of specific phosphoinositide interactions for membrane association of members of the VILIP family.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Lipoilação , Membranas Artificiais , Neurocalcina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Cálcio/química , Membrana Celular/química , Humanos , Neurocalcina/química , Fosfatos de Fosfatidilinositol/química
4.
Biochim Biophys Acta ; 1808(1): 106-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20833125

RESUMO

The K4 peptide (KKKKPLFGLFFGLF) was recently demonstrated to display good antimicrobial activities against various bacterial strains and thus represents a candidate for the treatment of multiple-drug resistant infections. In this study, we use various techniques to study K4 behaviour in different media: water, solutions of detergent micelles, phospholipid monolayers and suspension of phospholipid vesicles. First, self-assembly of the peptide in water is observed, leading to the formation of spherical objects around 10nm in diameter. The addition of micelles induces partial peptide folding to an extent depending on the charge of the detergent headgroups. The NMR structure of the peptide in the presence of SDS displays a helical character of the hydrophobic moiety, whereas only partial folding is observed in DPC micelles. This peptide is able to destabilize the organization of monolayer membranes or bilayer liposomes composed of anionic lipids. When added on small unilamellar vesicles it generates larger objects attributed to mixed lipid-peptide vesicles and aggregated vesicles. The absence of calcein leakage from liposomes, when adding K4, underlines the original mechanism of this linear amphipathic peptide. Our results emphasize the importance of the electrostatic effect for K4 folding and lipid destabilization leading to the microorganisms' death with a high selectivity for the eukaryotic cells at the MIC. Interestingly, the micrographs obtained by electronic microscopy after addition of peptide on bacteria are also consistent with the formation of mixed lipid-peptide objects. Overall, this work supports a detergent-like mechanism for the antimicrobial activity of this peptide.


Assuntos
Anti-Infecciosos/química , Detergentes/química , Peptídeos/química , Dicroísmo Circular , Fluoresceínas/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Prótons , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA