Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166771, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286144

RESUMO

To date, various agents and molecules have been developed to treat post-stroke neuroinflammation; however, none of them are clinically successful. Post-stroke neuroinflammation is primarily attributed to microglial polarization as the generation of inflammasome complexes shifts microglia to their M1 phenotype and regulates the downstream cascade. Inosine, an adenosine derivative reported to maintain cellular energy homeostasis in stressed conditions. Although the exact mechanism is still unexplored, various studies have reported that it can stimulate axonal sprouting in different neurodegenerative diseases. Hence, our present study aims to decipher the molecular mechanism of inosine mediated neuroprotection by modulating inflammasome signaling towards altered microglial polarization in ischemic stroke. Inosine was administered intraperitoneally to male Sprague Dawley rats at 1 h post-ischemic stroke and was further evaluated for neurodeficit score, motor coordination and long-term neuroprotection. Brains were harvested for infarct size estimation, biochemical assays and molecular studies. Inosine administration at 1 h post ischemic stroke decreased infarct size, neurodeficit score, and improved motor co-ordination. Normalization of biochemical parameters were achieved in the treatment groups. Microglial polarization towards its anti-inflammatory phenotype and modulation of inflammation were evident by relevant gene and protein expression studies. The outcome provides preliminary evidence of inosine mediated alleviation of post-stroke neuroinflammation via modulation of microglial polarization towards its anti-inflammatory form through regulating the inflammasome activation.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Masculino , Microglia/metabolismo , Inflamassomos/metabolismo , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Anti-Inflamatórios , AVC Isquêmico/metabolismo , Infarto
2.
Cell Stress Chaperones ; 28(6): 1041-1051, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36622548

RESUMO

Apoptosis mediated by endoplasmic reticulum (ER) stress plays a crucial role in several neurovascular disorders, including ischemia/reperfusion injury (I/R injury). Previous in vitro and in vivo studies have suggested that following I/R injury, ER stress is vital for mediating CCAT-enhancer-binding protein homologous protein (CHOP) and caspase-12-dependent apoptosis. However, its modulation in the presence of stem cells and the underlying mechanism of cytoprotection remains elusive. In vivo studies from our lab have reported that post-stroke endovascular administration of stem cells renders neuroprotection and regulates apoptosis mediated by ER stress. In the current study, a more robust in vitro validation has been undertaken to decipher the mechanism of stem cell-mediated cytoprotection. Results from our study have shown that oxygen-glucose deprivation/reoxygenation (OGD/R) potentiated ER stress and apoptosis in the pheochromocytoma 12 (PC12) cell line as evident by the increase of protein kinase R (PKR)-like ER kinase (p-PERK), p-Eukaryotic initiation factor 2α subunit (EIF2α), activation transcription factor 4 (ATF4), CHOP, and caspase 12 expressions. Following the co-culture of PC12 cells with MSCs, ER stress was significantly reduced, possibly via modulating the brain-derived neurotrophic factor (BDNF) signaling. Furthermore, inhibition of BDNF by inhibitor K252a abolished the protective effects of BDNF secreted by MSCs following OGD/R. Our study suggests that inhibition of ER stress-associated apoptotic pathway with MSCs co-culture following OGD/R may help to alleviate cellular injury and further substantiate the use of stem cells as a therapeutic modality toward neuroprotection following hypoxic injury or stroke in clinical settings.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Traumatismo por Reperfusão , Animais , Ratos , Apoptose , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Técnicas de Cocultura , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Oxigênio/metabolismo , Células PC12 , Traumatismo por Reperfusão/tratamento farmacológico , Células-Tronco/metabolismo
3.
Stem Cell Rev Rep ; 19(1): 264-274, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251114

RESUMO

BACKGROUND AND PURPOSE: The impact of increased BDNF expression in brain by endovascular delivered mesenchymal stem cells (MSCs) post stroke towards modulating endoplasmic reticulum (ER) stress mediated neuronal remodeling has not been directly studied. Therefore, the present study investigates ER stress mediated neuronal remodeling following IA MSCs infusion in rodent model of ischemic stroke. METHODS: Ovariectomized Sprague Dawley rats were subjected to MCAO followed by 1 × 105 IA MSCs administration at 6 h. Infarct and functional outcomes at different time points post-stroke were evaluated. Further, various genes and protein expression studies were performed to determine the underlying mechanisms of the effect of IA MSCs towards ER stress mediated neuronal remodeling. RESULTS: Post-stroke IA MSCs administration significantly increased BDNF expression and decreased ER stress markers expression at day 1 post-stroke. A gradual rise in the expression of growth associate protein-43 (GAP 43) and spinophilin were observed at 7, 14- and 28-days post-stroke indicating an increase in neuronal remodeling towards functional restoration. CONCLUSIONS: The results suggest that IA MSCs post-stroke can modulate neuronal remodeling by BDNF-mediated reduction in ER stress that contribute towards functional recovery.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Ratos , Animais , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo
4.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740526

RESUMO

Radiogenomics, a combination of "Radiomics" and "Genomics," using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.

5.
Cent Nerv Syst Agents Med Chem ; 22(3): 175-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674296

RESUMO

INTRODUCTION: Ischemic stroke remains the leading cause of death worldwide and is the primary cause of disability globally. Numerous studies have shown that plant-origin medicines are promising and can influence the treatment of neurological disorders. Phyllanthus embilica L. (P. emblica or Amla) is one of the herbal plants whose medicinal properties are widely studied. The objective of the present study is to determine the neuroprotective effects of an aqueous extract of the fruit of P. emblica (hereinafter referred to as just P. emblica) on cerebral ischemia-reperfusion injury and explore if it can regulate BDNF/PI3K pathway to modulate glutathione for mitoprotection and neuroprotection. METHODS: In vivo studies were conducted on male Sprague Dawley rats, where rats were prophylactically administered 100 mg/kg P. emblica for 30 days. In the treatment group, rats were given 100 mg/kg P. emblica, 1 h post middle cerebral artery occlusion (MCAo). Rats were evaluated for neuro deficit and motor function tests. Brains were further harvested for infarct size evaluation, biochemical analysis, protein expression studies, and mitochondrial studies. RESULTS: Prophylaxis and treatment with P. emblica demonstrated significant improvement in functional outcome with a reduction in infarct size. Normalization of glutathione, nitrite, and malondialdehyde levels was also observed. Improvement in mitochondrial complex I and IV activities was also reported. Expressions of BDNF, PI3K, SDF1 and VEGF increased while that of ROCK2 decreased following P. emblica administration. CONCLUSION: P. emblica regulates BDNF/PI3K pathway to modulate glutathione in ischemic stroke to confer mitoprotection and neuroprotection.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Phyllanthus emblica , Extratos Vegetais , Animais , Ratos , Isquemia Encefálica/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glutationa/uso terapêutico , Infarto , AVC Isquêmico/tratamento farmacológico , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Phyllanthus emblica/química , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia
6.
Stem Cell Rev Rep ; 18(2): 821-838, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112234

RESUMO

AIM: Stroke results in long term serious disability that affect millions across the globe. Several clinical and preclinical studies have reinforced the therapeutic use of stem cells in stroke patients to enhance their quality of life. Previous studies from our lab have demonstrated that 1*105 allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) when given intraarterially (IA) render neuroprotection by modulating the expression of inflammasomes. Sirtuins are a class of important deacylases having a significant role in cellular functioning. Sirtuin-1 (SIRT-1) is an important enzyme essential for regulating cellular metabolism, which is reduced following an ischemic episode. The present study aims to unviel the role of MSCs in regulating the brain SIRT-1 levels following stroke and the involvement of SIRT-1 in regulating inflammasome signaling to reduce cellular apoptosis towards rendering neuroprotection. MATERIALS AND METHODS: 6 h post-reversible middle cerebral artery occlusion (MCAo), ovariectomized Sprague Dawley (SD) rats were infused intraarterially with 1*105 MSCs. 24 h after MCAo animals were examined for functional and behavioral outcomes. Brains were collected for assessing size of infarct and neuronal morphology. Molecular and immunofluroscence studies were also performed for assessing changes in gene and protein expressions. Extent of apoptosis was also determined in different groups. Inhibition study with SIRT-1 specific inhibitor EX-527 was also performed. RESULTS: A reduction in infarct size and improvement in motor functional and behavioral outcomes following infusion of MSCs IA at 6 h post-stroke was observed. Increase in average neuronal density and neuronal length was also seen. Increased expression of SIRT-1, BDNF and concomitant reduction in the expression of different inflammatory and apoptotic markers in the brain cortical regions were observed following MSCs treatment. CONCLUSION: Our study provides a preliminary evidence that post-stroke IA MSCs therapy regulates SIRT-1 to modulate NF-κB pathway to mitigate inflammasome signaling and cellular apoptosis. This study using IA approach for administering MSCs is highly relevant clinically. Our study is the first to report that neuroprotective effects of IA MSCs in rodent focal ischemia is mediated by SIRT-1 regulation of inflammasome signaling.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , NF-kappa B , Fármacos Neuroprotetores , Sirtuína 1 , Animais , Apoptose , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Inflamassomos/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Qualidade de Vida , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo
7.
Mol Neurobiol ; 59(5): 2758-2775, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35187613

RESUMO

Post-stroke edema and upregulation of aquaporin 4 (AQP4) water transport channels play a significant role in the progression of stroke pathology and deteriorating stroke outcomes. Prior studies from our lab have demonstrated the safety and efficacy of intra-arterial (IA) 1 × 105 mesenchymal stem cells (MSCs) administration post-stroke towards functional restoration and neuroprotection. Protein kinases have been reported to be involved in the signaling cascade of edema, with evidence supporting both its upregulation and downregulation at 24 h post-stroke. Among different protein kinase C (PKC) isoforms, the δ isoform is widely reported to play a pivotal role in the progression of ischemic reperfusion injury. Our present study aims to decipher the molecular mechanism of post-stroke IA MSCs mediated alleviation of perifocal vasogenic edema by PKCδ-mediated AQP4 regulation. Ovariectomized female SD rats were infused with 1 × 105 IA MSCs at 6 h post middle cerebral artery occlusion (MCAo). Animals were evaluated for behavioral and functional outcomes. Brains were harvested for evaluating infarct size and brain edema. Further, brain tissues were used for biochemical and molecular studies to decipher the possible molecular mechanism related to the regulation of PKCδ-mediated AQP4 expression. 1 × 105 IA MSCs at 6 h post-stroke confers neuroprotection as evident by the reduction in infarct size, edema, and improvement of functional outcome. An increase in GSH and catalase and a reduction in nitrite and MDA were observed along with a decrease in AQP4 and PKCδ expressions within the cortical brain regions of IA MSC-infused animals. The study gives preliminary evidence that IA MSCs administration post-stroke modulates PKCδ to regulate AQP4 expression which alleviates vasogenic edema towards neuroprotection. The study is novel and clinically relevant as no previous studies have looked into this aspect following IA delivery of stem cells in an animal model of ischemic stroke.


Assuntos
Edema Encefálico , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Aquaporina 4/metabolismo , Barreira Hematoencefálica/patologia , Edema Encefálico/patologia , Edema , Feminino , Infarto da Artéria Cerebral Média/patologia , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia
8.
ACS Chem Neurosci ; 12(19): 3745-3759, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34553602

RESUMO

Ischemic stroke is devastating, with serious long-term disabilities affecting millions of people worldwide. Growing evidence has shown that mesenchymal stem cells (MSCs) administration after stroke provides neuroprotection and enhances the quality of life in stroke patients. Previous studies from our lab have shown that 1 × 105 MSCs administered intra-arterially (IA) at 6 h post stroke provide neuroprotection through the modulation of inflammasome and calcineurin signaling. Ischemic stroke induces endoplasmic reticulum (ER) stress, which exacerbates the pathology. The current study intends to understand the involvement of brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling in preventing apoptosis induced by ER stress post stroke following IA MSCs administration. Ischemic stroke was induced in ovariectomized female Sprague Dawley rats. The MSCs were administered IA, and animals were sacrificed at 24 h post stroke. Infarct area, neurological deficit score, motor coordination, and biochemical parameters were evaluated. The expression of various genes and proteins was assessed. An inhibition study was also carried out to confirm the involvement of BDNF/TrkB signaling in ER stress-induced apoptosis. IA-administered MSCs improved functional outcomes, reduced infarct area, increased neuronal survival, and normalized biochemical parameters. mRNA and protein expression of ER stress markers were reduced, while those of BDNF and TrkB were increased. Reduction in ER stress-mediated apoptosis was also observed. The present study shows that IA MSCs administration post stroke provides neuroprotection and can modulate ER stress-mediated apoptosis via the BDNF/TrkB signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transplante de Células-Tronco Hematopoéticas , Animais , Apoptose , Estresse do Retículo Endoplasmático , Feminino , Humanos , Neurônios , Qualidade de Vida , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Tropomiosina
9.
J Neurol Sci ; 427: 117510, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077859

RESUMO

This comprehensive review provides an insight into the pathophysiology, epidemiology, evaluation, and treatment of sickle cell anemia (SCA)-related stroke in developed and developing countries. Vascular injury, hypercoagulability and vaso-occlusion play a role in the pathophysiology of stroke in SCA. Transcranial Doppler ultrasound (TCD) has lowered the incidence of ischemic stroke from 11% to 1% as TCD identifies children who are at risk for stroke, providing opportunities for interventions to reduce this risk. Whereas blood exchange is indicated in acute stroke, chronic transfusions (either simple or exchange on a monthly basis) are used for primary as well as secondary stroke prevention in developed countries. Children with abnormally high TCD velocities (≥ 200 cm/s) are at high risk of stroke and might benefit from hydroxyurea or hydroxycarbamide (HU) after a period of a successful transition from chronic transfusions. Hematopoietic stem cell transplant presents a cure for SCA. Gene therapy is currently investigated and may be offered to patients with SCA who had a stroke or who are at high risk of stroke if proven efficacious and safe. However, gene therapy is not likely to be implemented in low-income countries due to cost. Alternatively, HU is utilized for primary and secondary stroke prevention in developing countries. Further expansion of TCD implementation should be a priority in those settings.


Assuntos
Anemia Falciforme , Acidente Vascular Cerebral , Anemia Falciforme/complicações , Anemia Falciforme/terapia , Antidrepanocíticos , Criança , Países em Desenvolvimento , Humanos , Hidroxiureia/uso terapêutico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Ultrassonografia Doppler Transcraniana
10.
Cell Biol Toxicol ; 37(5): 653-678, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864549

RESUMO

Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.


Assuntos
Neoplasias , Piruvato Quinase , Receptores ErbB , Humanos , Inflamação , Piruvato Quinase/metabolismo , Transdução de Sinais
11.
J Mol Neurosci ; 71(2): 419-426, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31820348

RESUMO

Studies from our lab demonstrated that 1 × 105 intra-arterial mesenchymal stem cells (IA MSCs) at 6 h following ischemic stroke are efficacious owing to its maximum homing due to elevated stromal derived factor 1 (SDF1) in the tissue. Further, IA MSCs could abate the infarct progression, improve functional outcome, and decrease expression of calcineurin by modifying neuronal Ca2+ channels following ischemic stroke. Since stroke pathology also encompasses acidosis that worsens the condition; hence, the role of acid sensing ion channels (ASICs) in this context could not be overlooked. ASIC1a being the major contributor towards acidosis triggers Ca2+ ions overload which progressively contributes towards exacerbation of neuronal injury following ischemic insult. Inflammasome involvement in ischemic stroke is well reported as activated ASIC1a increases the expression of inflammasome in a pH-dependent manner to trigger inflammatory cascade. Hence, the current study aimed to identify if IA MSCs can decrease the production of inflammasome by attenuating ASIC1a expression to render neuroprotection. Ovariectomized Sprague Dawley (SD) rats exposed to middle cerebral artery occlusion (MCAo) for 90 min were treated with phosphate-buffered saline (PBS) or 1 × 105 MSCs IA at 6 h to check for the expression of ASIC1a and inflammasome in different groups. Inhibition studies were carried out to explore the underlying mechanism. Our results demonstrate that IA MSCs improves functional outcome and oxidative stress parameters, and decreases the expression of ASIC1a and inflammasomes in the cortical brain region after ischemic stroke. This study offers a preliminary evidence of the role of IA MSCs in regulating inflammasome by modulating ASIC1a.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Infarto da Artéria Cerebral Média/terapia , Inflamassomos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Proteínas do Tecido Nervoso/fisiologia , Amilorida/uso terapêutico , Animais , Dano Encefálico Crônico/etiologia , Dano Encefálico Crônico/prevenção & controle , Feminino , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Injeções Intra-Arteriais , Células-Tronco Mesenquimais/fisiologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Distúrbios Somatossensoriais/etiologia , Distúrbios Somatossensoriais/prevenção & controle
12.
Ann N Y Acad Sci ; 1457(1): 41-60, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31460675

RESUMO

The endoplasmic reticulum (ER) and mitochondria are fundamental organelles highly interconnected with a specialized set of proteins in cells. ER-mitochondrial interconnections form specific microdomains, called mitochondria-associated ER membranes, that have been found to play important roles in calcium signaling and lipid homeostasis, and more recently in mitochondrial dynamics, inflammation, and autophagy. It is not surprising that perturbations in ER-mitochondria connections can result in the progression of disease, especially neurological disorders; hence, their architecture and regulation are crucial in determining the fate of cells and disease. The molecular identity of the specialized proteins regulating ER-mitochondrial crosstalk remains unclear. Our discussion here describes the physical and functional crosstalk between these two dynamic organelles and emphasizes the outcome of altered ER-mitochondrial interconnections in neurological disorders.


Assuntos
Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Autofagia , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Progressão da Doença , Estresse do Retículo Endoplasmático , GTP Fosfo-Hidrolases/metabolismo , Homeostase , Humanos , Doença de Huntington/metabolismo , Inflamação , Lipídeos/química , Camundongos , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Presenilinas/metabolismo , Ratos , Proteínas de Transporte Vesicular/metabolismo
13.
Int J Neurosci ; 129(10): 1039-1044, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31203689

RESUMO

Aim: Calcineurin (CaN) is a threonine/phosphatase which play roles in neuronal homeostasis. Ischemic stroke induces hyperactivation of CaN which further triggers apoptotic signaling. CaN inhibition has limited therapeutic output and neurotoxicity due to its intricate roles in the neuronal network and requires a strategic modulation. Intra-arterial (IA) mesenchymal stem cells (MSCs) have shown to interact with the milieu in a paracrine manner as compared to CaN inhibitors to ameliorate the neuronal damage triggered by ischemia/reperfusion injury. The present study investigates the role of IA MSCs in modulating neuronal CaN after stroke onset. Materials and methods: To validate, middle-aged ovariectomized female rats exposed to MCAo (90 min) were treated with IA MSCs (1 × 105 MSCs) or phosphate-buffered saline (PBS) at 6 hours to check CaN expression in different groups.Tests for assessing functional and motor coordination were performed along with biochemical estimations. Furthermore, an inhibition study by non-selective inhibitor of neuronal calcium channel, flunarizine, was performed to explore the possible underlying mechanism by which IA MSCs may interact with CaN. Results: The study suggests that IA MSCs seemingly reduce the expression of CaN after ischemic stroke. IA MSCs have shown to improve the functional outcome and normalize oxidative parameters. Conclusion: Our study provides a preliminary evidence of role of IA MSCs in modulating CaN expression.


Assuntos
Isquemia Encefálica/metabolismo , Calcineurina/biossíntese , Transplante de Células-Tronco Mesenquimais/métodos , Neurônios/metabolismo , Neuroproteção/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Isquemia Encefálica/terapia , Feminino , Infusões Intra-Arteriais , Ovariectomia/efeitos adversos , Ovariectomia/tendências , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia
14.
Life Sci ; 216: 49-58, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414429

RESUMO

AIM: Stroke is devastating with a limited choice of intervention. Many pharmacological entities are available but none of them have evolved successfully in counteracting the multifaceted molecular alterations following stroke. Myeloperoxidase (MPO) has been reported to play an important role in neuroinflammation following neurodegenerative diseases. Therefore, using it as a therapeutic target may be a strategy to confer neuroprotection in stroke. Trigonelline (TG), a plant alkaloid has shown neuroprotective effects in the past. Here we explore its neuroprotective effects and its role in glutathione mediated MPO inhibition in ischemic stroke. METHODS: An in silico study was performed to confirm effective TG and MPO interaction. An in vitro evaluation of toxicity with biochemical estimations was performed. Further, in vivo studies were undertaken where rats were treated with 25, 50 and 100 mg/kg TG or standard MPO inhibiting drug4­Aminobenzoic hydrazide (4­ABH) at 60 min prior, post immediate and an hour post 90 min of middle cerebral artery occlusion (MCAo) followed by 24 h reperfusion. Rats were evaluated for neurodeficit and motor function tests. Brains were further harvested for infarct size evaluation, biochemical analysis, and western blot experiments. KEY FINDINGS: TG at 100 mg/kg dose i.p. administered immediately post ischemia confers neuroprotection by reducing cerebral infarct with improvement in motor and neurodeficit scores. Furthermore, elevated nitrite and MDA levels were also found to be reduced in brain regions in the treated group. TG also potentiated intrinsic antioxidant status and markedly inhibited reduced glutathione mediated myeloperoxidase expression in the cortical brain region. SIGNIFICANCE: TG confers neuroprotection by reduced glutathione mediated myeloperoxidase inhibition in ischemic stroke.


Assuntos
Alcaloides/farmacologia , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Peroxidase/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Alcaloides/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Antioxidantes/metabolismo , Western Blotting , Isquemia Encefálica/patologia , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Masculino , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
15.
ACS Chem Neurosci ; 9(3): 421-430, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29351721

RESUMO

Myeloperoxidase (MPO) is a protein present in azurophilic granules, macrophages, and neutrophils that are released into extracellular fluid (ECF) during inflammation. MPO releases hypochlorous acid (HOCl) and other chlorinated species. It is derived from hydrogen peroxide (H2O2) showing response during inflammatory conditions and plays a role in the immune defense against pathogens. MPO may show unwanted effects by indirectly increasing the formation of reactive nitrogen species (RNS), reactive oxygen species (ROS), and tumor necrosis factor alpha (TNF-α) leading to inflammation and oxidative stress. As neuroinflammation is one of the inevitable biological components among most of neurological disorders, MPO and its receptor may be explored as candidates for future clinical interventions. The purpose of this review is to provide an overview of the pathophysiological characteristics of MPO and further explore the possibilities to target it for clinical use. Targeting MPO is promising and may open an avenue to act as a biomarker for diagnosis with defined risk stratification in patients with various neurological disorders.


Assuntos
Ácido Hipocloroso/metabolismo , Inflamação/metabolismo , Doenças do Sistema Nervoso/metabolismo , Neutrófilos/citologia , Peroxidase/metabolismo , Animais , Humanos , Doenças do Sistema Nervoso/diagnóstico , Estresse Oxidativo/fisiologia
16.
Transl Stroke Res ; 9(4): 356-374, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29075984

RESUMO

Stem cell therapy for ischemic stroke has widely been explored. Results from both preclinical and clinical studies have immensely supported the judicious use of stem cells as therapy. These provide an attractive means for preserving and replacing the damaged brain tissues following an ischemic attack. Since the past few years, researchers have used various types of stem cells to replenish insulted neuronal and glial cells in neurological disorders. In the present review, we discuss different types of stem cells employed for the treatment of ischemic stroke and mechanisms and challenges these cells face once introduced into the living system. Further, we also present different ways to maneuver and overcome challenges to translate the advances made at the preclinical level to clinics.


Assuntos
Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/cirurgia , Animais , Isquemia Encefálica/complicações , Ensaios Clínicos como Assunto/métodos , Humanos
17.
Clin Pharmacol Ther ; 103(6): 990-998, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29090465

RESUMO

Numerous preclinical studies have been carried out using mesenchymal stem cells (MSCs) therapy for ischemic stroke. The purpose of the present meta-analysis is to review the quality of preclinical studies. In all, 4,361 articles were identified, out of which 64 studies were included (excluding in vitro studies). The results were obtained across species, route, and time of administration, immunogenicity, and doses. The median quality score 4.90/10, confidence interval 95%, and large effect size were observed, which strongly supports the translation potential of MSC therapy for ischemic stroke.


Assuntos
Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral/terapia , Animais , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA