Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(9): 1673-1685, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39237687

RESUMO

Photodynamic therapy (PDT) is a promising alternative treatment for localized lesions and infections, utilizing reactive oxygen species (ROS) generated by photosensitizers (PS) upon light activation. Singlet oxygen (1O2) is a key ROS responsible for photodynamic damage. However, the effectiveness of PS in biological systems may not correlate with the efficiency of singlet oxygen generation in homogeneous solutions. This study investigated singlet oxygen generation and its decay in various cellular microenvironments using liposome and ARPE-19 cell models. Rose Bengal (RB), methylene blue (MB), and protoporphyrin IX (PpIX) were employed as selected PS. Lifetimes of singlet oxygen generated by the selected photosensitizers in different cellular compartments varied, indicating different quenching rates with singlet oxygen. RB, located near cell membranes, exhibited the highest phototoxicity and lipid/protein peroxidation, followed by PpIX, while MB showed minimal cytotoxicity in similar conditions. Singlet oxygen decay lifetimes provide insights into PS localization and potential phototoxicity, highlighting the importance of the lipid microenvironment in PDT efficacy, providing useful screening method prior to in vivo applications.


Assuntos
Lipossomos , Azul de Metileno , Fotoquimioterapia , Fármacos Fotossensibilizantes , Protoporfirinas , Rosa Bengala , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Humanos , Rosa Bengala/farmacologia , Rosa Bengala/química , Protoporfirinas/química , Protoporfirinas/farmacologia , Protoporfirinas/metabolismo , Lipossomos/química , Azul de Metileno/química , Azul de Metileno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Luz
2.
Artigo em Inglês | MEDLINE | ID: mdl-38803190

RESUMO

Melanin, particularly eumelanin, is commonly viewed as an efficient antioxidant and photoprotective pigment. Nonetheless, the ability of melanin to photogenerate reactive oxygen species and sensitize the formation of cyclobutane pyrimidine dimers may contribute to melanin-dependent phototoxicity. The phototoxic potential of melanin depends on a variety of factors, including molecular composition, redox state, and degree of aggregation. Using complementary spectroscopic and analytical methods we analyzed the physicochemical properties of Dopa-melanin, a synthetic model of eumelanin, subjected to oxidative degradation induced by aerobic photolysis or exposure to 0.1 M hydrogen peroxide. Both modes of oxidative degradation were accompanied by dose-dependent bleaching of melanin and irreversible modifications of its paramagnetic, ion- and electron-exchange and antioxidant properties. Bleached melanin exhibited enhanced efficiency to photogenerate singlet oxygen in both UVA and short-wavelength visible light. Although chemical changes of melanin subunits, including a relative increase of DHICA content and disruption of melanin polymer induced by oxidative degradation were considered, these two mechanisms may not be sufficient for a satisfactory explanation of the elevated photosensitizing ability of the bleached eumelanin. This study points out possible adverse changes in the photoprotective and antioxidant properties of eumelanin that could occur in pigmented tissues after exposure to high doses of intense solar radiation.

3.
J Photochem Photobiol B ; 243: 112704, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030132

RESUMO

Even though melanin is commonly viewed as natural photoprotectant, the pigment demonstrates residual photoreactivity, which under certain conditions could contribute to UVA-dependent melanomagenesis. Skin melanin is constantly exposed to external stressors, including solar radiation, which could induce photodegradation of the pigment. Although photodegradation of melanin pigments was studied in synthetic models and RPE melanosomes, photochemical and photobiological effects of experimental photodegradation of human skin melanin of different chemical composition remain unknown. In this work, melanosomes isolated from hair of individuals of different skin phototypes (I-III, V) were exposed to high-intensity violet light and its impact on physical and chemical properties of the pigments were analyzed using electron paramagnetic resonance (EPR), spectrophotometry and dynamic light scattering (DLS). Photoreactivity of photodegraded melanins was examined by EPR oximetry, EPR spin-trapping and time-resolved singlet oxygen phosphorescence. Antioxidant potential of the pigments was measured using the EPR DPPH assay. Cellular effect of the exposure of melanosome-loaded HaCaT cells to UV-Vis light was determined by MTT assay, JC-10 assay, and iodometric assay. The data revealed that experimental photodegradation increased photoreactivity of natural melanins, while decreasing their antioxidant capacity. Photodegraded melanin was responsible for higher cell death, a decrease in mitochondrial membrane potential and elevated levels of lipid hydroperoxides.


Assuntos
Antioxidantes , Melaninas , Humanos , Antioxidantes/metabolismo , Melaninas/metabolismo , Luz , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Cabelo
4.
J Neural Transm (Vienna) ; 130(1): 29-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527527

RESUMO

Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 â„ƒ. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.


Assuntos
Dopamina , Ferro , Dopamina/metabolismo , Ferro/metabolismo , Cobre , Melaninas/metabolismo , Oxirredução , Peróxido de Hidrogênio/química
5.
Front Oncol ; 12: 842496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359389

RESUMO

Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet radiation and other environmental stressors. It is produced by the enzymatic transformation of L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) oligomers-main constituents of eumelanin, and benzothiazine and benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure and by many hormonal factors at the tissue, cellular, and subcellular levels. While the presence of melanin protects against the development of skin cancers including cutaneous melanoma, its presence may be necessary for the malignant transformation of melanocytes. This shows a complex role of melanogenesis in melanoma development defined by chemical properties of melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1α) activation, which, combined with their immunosuppressive effects, can lead to melanoma progression and resistance to immunotherapy. On the other hand, melanogenesis-related proteins can be a target for immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have shown a negative correlation between tumor pigmentation and diseases outcome as defined by overall survival and disease-free time. This indicates a "Yin and Yang" role for melanin and active melanogenesis in melanoma development, progression, and therapy. Furthermore, based on the clinical, experimental data and diverse effects of melanogenesis, we propose that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic adjuvant strategy to enhance immuno-, radio-, and chemotherapy.

6.
Photochem Photobiol ; 98(5): 1110-1121, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35067943

RESUMO

Chronic exposure of the retina to short wavelength visible light is a risk factor in pathogenesis of age-related macular degeneration. The proper functioning and survival of photoreceptors depends on efficient phagocytosis of photoreceptor outer segments (POS) by retinal pigment epithelium. The purpose of this study was to analyze the phagocytic activity of blue light-treated ARPE-19 cells, and to examine whether the observed effects could be related to altered levels of POS phagocytosis receptor proteins and/or to oxidation of cellular proteins and lipids. POS phagocytosis was measured by flow cytometry. Phagocytosis receptor proteins αv and ß5 integrin subunits and Mer tyrosine kinase (MerTK) were quantified by western blotting. The intact functional heterodimer αvß5 was quantified by immunoprecipitation followed by immunoblotting. Cellular protein and lipid hydroperoxides were analyzed by coumarin boronic acid probe and iodometric assay, respectively. Cell irradiation induced reversible inhibition of specific phagocytosis and transient reductions in phagocytosis receptor proteins. Full recovery of functional heterodimer was apparent. Significant photooxidation of cellular proteins and lipids was observed. The results indicate that transient inhibition of specific phagocytosis by blue light could be related to the reduction in phagocytosis receptor proteins. Such changes may arise from oxidative modifications of cell phagocytic machinery components.


Assuntos
Luz , Epitélio Pigmentado da Retina , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Cumarínicos , Lipídeos , Epitélio Pigmentado da Retina/metabolismo , c-Mer Tirosina Quinase/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923346

RESUMO

Photoreactivity of melanin has become a major focus of research due to the postulated involvement of the pigment in UVA-induced melanoma. However, most of the hitherto studies were carried out using synthetic melanin models. Thus, photoreactivity of natural melanins is yet to be systematically analyzed. Here, we examined the photoreactive properties of natural melanins isolated from hair samples obtained from donors of different skin phototypes (I, II, III, and V). X-band and W-band electron paramagnetic resonance (EPR) spectroscopy was used to examine the paramagnetic properties of the pigments. Alkaline hydrogen peroxide degradation and hydroiodic acid hydrolysis were used to determine the chemical composition of the melanins. EPR oximetry and spin trapping were used to examine the oxygen photoconsumption and photo-induced formation of superoxide anion, and time-resolved near infrared phosphorescence was employed to determine the singlet oxygen photogeneration by the melanins. The efficiency of superoxide and singlet oxygen photogeneration was related to the chemical composition of the studied melanins. Melanins from blond and chestnut hair (phototypes II and III) exhibited highest photoreactivity of all examined pigments. Moreover, melanins of these phototypes showed highest quantum efficiency of singlet oxygen photogeneration at 332 nm and 365 nm supporting the postulate of the pigment contribution in UVA-induced melanoma.


Assuntos
Cor de Cabelo/efeitos da radiação , Cabelo/metabolismo , Melaninas/metabolismo , Fotoquímica , Pele/metabolismo , Raios Ultravioleta , Feminino , Cabelo/efeitos da radiação , Humanos , Masculino , Melaninas/efeitos da radiação , Oxirredução , Oxigênio/química , Pele/efeitos da radiação
8.
Pigment Cell Melanoma Res ; 34(4): 670-682, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702137

RESUMO

Aging may significantly modify antioxidant and photoprotective properties of melanin in retinal pigment epithelium (RPE). Here, photoreactivity of melanosomes (MS), isolated from younger and older human donors with and without added zeaxanthin and α-tocopherol, was analyzed by electron paramagnetic resonance oximetry, time-resolved singlet oxygen phosphorescence, and protein oxidation assay. The phototoxic potential of ingested melanosomes was examined in ARPE-19 cells exposed to blue light. Phagocytosis of FITC-labeled photoreceptor outer segments (POS) isolated from bovine retinas was determined by flow cytometry. Irradiation of cells fed MS induced significant inhibition of the specific phagocytosis with the effect being stronger for melanosomes from older than from younger human cohorts, and enrichment of the melanosomes with antioxidants reduced the inhibitory effect. Cellular protein photooxidation was more pronounced in samples containing older melanosomes, and it was diminished by antioxidants. This study suggests that blue light irradiated RPE melanosomes could induce substantial inhibition of the key function of the cells-their specific phagocytosis. The data indicate that while photoreactivity of MS and their phototoxic potential increase with age, they could be reduced by selected natural antioxidants.


Assuntos
Antioxidantes/farmacologia , Senescência Celular/efeitos da radiação , Luz , Melanossomas/patologia , Melanossomas/efeitos da radiação , Adolescente , Adulto , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Humanos , Luminescência , Melanossomas/efeitos dos fármacos , Pessoa de Meia-Idade , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Doadores de Tecidos , Adulto Jovem
9.
ACS Biomater Sci Eng ; 6(10): 5930-5940, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320587

RESUMO

Skin cancer is the most common cancer in the U.S.A. and Europe. Its subtype, squamous skin carcinoma (SCC), if allowed to grow, has the potential to metastasize and can become deadly. Currently, carbon nanomaterials are being developed to treat cancer due to their attractive physicochemical and biological properties such as an enhanced permeability effect and their ability to produce reactive oxygen species. Here, we describe the synthesis of two water-soluble aminofullerenes (MonoaminoC60 and HexakisaminoC60), which were evaluated as novel [60]fullerene based photosentizers exhibiting anticancer properties. Moreover, the previously described neutral glycofullerene GF1 and its peracetylated lipophilic precursor MMS48 were compared with the aminofullerenes for their ability to generate reactive oxygen species and oxidize lipids. Remarkably, the generation of singlet oxygen and a superoxide radical by HexakisaminoC60 was found to be markedly elevated in the presence of bovine serum albumin and NADH, respectively. Mechanistic studies of lipid peroxidation using cholesterol as a unique reporter molecule revealed that although all four fullerene nanomaterials primarily generated singlet oxygen, superoxide anion was also formed, which suggest a mixed mechanism of action (in which Type I and Type II photochemistry is involved). The [60]fullerene derivative HexakisaminoC60 was also studied for its phototoxicity in squamous skin cancer cell line (A431) using the MTT test and propidium iodide staining.


Assuntos
Fulerenos , Neoplasias Cutâneas , Europa (Continente) , Fulerenos/farmacologia , Humanos , Espécies Reativas de Oxigênio , Oxigênio Singlete , Neoplasias Cutâneas/tratamento farmacológico
10.
Cell Biochem Biophys ; 78(2): 181-189, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32451722

RESUMO

It is believed that while eumelanin plays photoprotective and antioxidant role in pigmented tissues, pheomelanin being more photoreactive could behave as a phototoxic agent. Although the metal ion-sequestering ability of melanin might be protective, transition metal ions present in natural melanins could affect their physicochemical properties. The aim of this research was to study iron binding by pheomelanin and analyze how such a binding affects selected properties of the melanin. Synthetic pheomelanin (CDM), prepared by enzymatic oxidation of DOPA in the presence of cysteine was analyzed by electron paramagnetic resonance (EPR) spectroscopy, spectrophotometry, chemical analysis, and time-resolved measurements of singlet oxygen phosphorescence. Iron broadened EPR signal of melanin and increased its optical absorption. Iron bound to melanin exhibited EPR signal at g = 4.3, typical for high-spin iron (III). Iron bound to melanin significantly altered the kinetics of melanin photodegradation, which in turn modified the accessibility and stability of the melanin-iron complexes as indicated by the release of iron from melanin induced by diethylenetriaminepentaacetic acid and KCN. Although bound to melanin iron little affects initial stages of photodegradation of CDM, the effect of iron becomes more pronounced at later stages of melanin photolysis.


Assuntos
Ferro/química , Melaninas/química , Encéfalo/metabolismo , Cisteína/química , Di-Hidroxifenilalanina/química , Espectroscopia de Ressonância de Spin Eletrônica , Epiderme/metabolismo , Humanos , Cinética , Oxirredução , Oxigênio/química , Fotoquímica , Fotólise , Oxigênio Singlete/química
11.
Cell Biochem Biophys ; 78(2): 121-122, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32449076

RESUMO

We are pleased and honored to present this special issue for CBBI on the broad topic of biomedical EPR. The papers herein resulted from the most recent October 2019 EPR Workshop in Kraków that encompasses work from outstanding researchers in the field. Before describing the range of articles, we have briefly summarized the history of these workshops and the publications that resulted.


Assuntos
Biologia/tendências , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância de Spin Eletrônica/tendências , Medicina/tendências , Aloenxertos , Congressos como Assunto , Humanos , Mitocôndrias/metabolismo , Neoplasias/diagnóstico por imagem , Óxido Nítrico/metabolismo , Polônia
12.
Acta Biochim Pol ; 66(4): 459-462, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31826048

RESUMO

One of the antioxidant roles of melanin is binding redox-active transition metal ions. The aim of this study was to examine the redox reactions accompanying iron binding by melanin. Two kinds of synthetic eumelanin were mixed with iron (II) and iron (III) in the presence and absence of citrate and ADP in the aerobic and anaerobic system. The iron binding was examined by electron paramagnetic resonance (EPR) spectroscopy and thiocyanate assay. Obtained results indicate that although melanin reduces iron (III) that is unbound to this polymer, binding of iron (II) is accompanied by its oxidation by melanin.


Assuntos
Ferro/metabolismo , Melaninas/metabolismo , Difosfato de Adenosina/farmacologia , Ácido Cítrico/farmacologia , Íons , Oxirredução , Ligação Proteica , Elementos de Transição/metabolismo
13.
Pigment Cell Melanoma Res ; 32(3): 359-372, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30457208

RESUMO

Although melanin is a photoprotective pigment, its elevated photochemical reactivity could lead to various phototoxic processes. Photoreactivity of synthetic pheomelanin, derived from 5-S-cysteinyldopa (5SCD-M) and its photodegradation products obtained by subjecting the melanin to aerobic irradiation with UV-visible light, was examined employing an array of advanced physicochemical methods. Extensive photolysis of 5SCD-M was accompanied by partial bleaching of the melanin, modification of its paramagnetic properties, and significant increase in the ability to photogenerate singlet oxygen. The changes correlated with a substantial decrease in the melanin content of benzothiazine (BT) units and increase of modified benzothiazole (BZ) units. Synthetically prepared BZ exhibited higher efficiency to photogenerate singlet oxygen than the synthetic BT, and the free radical form of BZ, unlike that of BT, did not show measurable spin density on nitrogen atom, which was confirmed by quantum chemical calculations. Formation of modified BZ units in the photobleached 5SCD-M is responsible for the paramagnetic and photochemical changes of the melanin and its elevated phototoxic potential. Given a relatively constant pheomelanin-eumelanin ratio, such undesirable changes could occur in individual of all skin types.


Assuntos
Melaninas/metabolismo , Melaninas/efeitos da radiação , Fotodegradação , Fotólise , Oxigênio Singlete/química , Humanos , Melaninas/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo , Raios Ultravioleta
14.
Photochem Photobiol ; 95(1): 227-236, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466182

RESUMO

Photochemical properties of a new class of inorganic nanoparticles, namely a cationic C60 fullerene substituted with three quaternary pyrrolidinium groups (BB6) and a surface-modified nanocrystalline TiO2 with bromopyrogallol red (Brp@TiO2 ) were examined for their effectiveness in photogenerating singlet oxygen and free radicals. In particular, their ability to photosensitize peroxidation of unsaturated lipids was analyzed in POPC:cholesterol liposomes and B16 mouse melanoma cells employing a range of spectroscopic and analytical methods. Because melanoma cells typically are pigmented, we examined the effect of melanin on the photosensitized peroxidation of lipids in liposomes and B16 melanoma cells, mediated by BB6 and Brp@TiO2 nanoparticles. The obtained results suggest that peroxidation of unsaturated lipids, photosensitized by BB6 occurs mainly, although not exclusively, via Type II mechanism involving singlet oxygen. On the other hand, if surface-modified TiO2 is used as a photosensitizer, Type I mechanism of lipid peroxidation dominates, as indicated by the predominant formation of the free radical-dependent cholesterol oxidation products. The protective effect of melanin was particularly evident when BB6 was used as a photosensitizer, suggesting that melanin could efficiently interfere with Type II processes.

15.
Antioxid Redox Signal ; 28(15): 1394-1403, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161882

RESUMO

SIGNIFICANCE: Chemotherapy is currently the principal method for treating many malignancies. Thus, the development of improved antitumor drugs with enhanced efficacy and selectivity remains a high priority. Recent Advances: Anthracycline antibiotics (AAs), for example, doxorubicin, daunomycin, and mitomycin C, belong to an important family of antitumor agents widely used in chemotherapy. These compounds are all quinones. They are, thus, capable of being reduced by appropriate chemicals or reductases. One of their important properties is that under aerobic conditions their reduced forms undergo oxidation, with concomitant generation of reactive oxygen species (ROS), namely, superoxide anion radicals, hydrogen peroxide, and hydroxyl radicals. The presence of metal ions is essential for the generation of ROS by AAs in biological systems. CRITICAL ISSUES: A fundamental shortcoming of the AAs is their high cardiotoxicity. We have proposed, and experimentally realized, a new type of quinones that is capable of coordinating metal ions. We have demonstrated in vitro that they can be reduced by electron transfer chains and glutathione with concomitant generation of ROS. They can also produce ROS under photo-excitation. The mechanisms of these reactions have been characterized by using nuclear magnetic resonance and electron paramagnetic resonance. FUTURE DIRECTIONS: To enhance their therapeutic effectiveness, and decrease cardiotoxicity and other side effects, we intend to conjugate the quinone chelators with monoclonal antibodies and peptide hormones that are specifically targeted to receptors on the cancer cell surface. Some such candidates have already been synthesized. An alternative approach for delivery of our compounds involves the use of specific peptide-based nanoparticles. In addition, our novel approach for treating malignancies is also suitable for photodynamic therapy. Antioxid. Redox Signal. 28, 1394-1403.


Assuntos
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Neoplasias/tratamento farmacológico , Oxirredução/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Espécies Reativas de Oxigênio/metabolismo
16.
Photochem Photobiol ; 94(3): 409-420, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28873228

RESUMO

Eumelanin is photoprotective for pigmented tissues while pheomelanin is phototoxic. In this review, we summarize current understanding of how eumelanin and pheomelanin structures are modified by ultraviolet A (UVA) and also by visible light and how reactive oxygen species participate in those processes. Alkaline hydrogen peroxide oxidation was employed to characterize eumelanin and benzothiazole-type pheomelanin, giving pyrrole-2,3,5-tricarboxylic acid (PTCA) and thiazole-2,4,5-tricarboxylic acid (TTCA), respectively. Reductive hydrolysis with hydroiodic acid gives 4-amino-3-hydroxyphenylalanine (4-AHP) from the benzothiazine moiety of pheomelanin. The results show that the photoaging of eumelanin gives rise to free PTCA (produced by peroxidation in situ) and pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA, produced by cross-linking). The TTCA/4-AHP ratio increases with photoaging, indicating the conversion of benzothiazine to the benzothiazole moiety. Analysis of those markers and their ratios show that both eumelanin and pheomelanin in human retinal pigment epithelium melanosomes undergo extensive structural modifications due to their lifelong exposure to blue light. Using synthetic melanins, we also found that singlet oxygen, in addition to superoxide anions, is photogenerated and quenched upon UVA irradiation. The (patho)physiological significance of those findings is discussed in relation to the tanning process, to melanomagenesis in the skin and to age-related macular degeneration in the eyes.


Assuntos
Luz , Melaninas/efeitos da radiação , Raios Ultravioleta , Ácidos Carboxílicos/química , Olho/metabolismo , Olho/fisiopatologia , Olho/efeitos da radiação , Humanos , Peróxido de Hidrogênio/metabolismo , Melaninas/metabolismo , Melaninas/fisiologia , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Pirróis/química , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Pele/metabolismo , Pele/fisiopatologia , Pele/efeitos da radiação , Envelhecimento da Pele , Tiazóis/química , Tirosina/análogos & derivados , Tirosina/química
17.
Cancer Lett ; 396: 10-20, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28288873

RESUMO

Tumour microenvironment determines the fate of treatments. Reconstitution of tumour conditions is mandatory for alternative in vitro methods devoted to cancer development and the selection of therapeutic strategies. This work describes a 3D model of melanoma growth in its environment. Introducing means to mimic tumour angiogenesis, which turns on tumour progression, the model shows that melanoma tumour spheroids allow reconstitution of solid tumours with stromal cells. Angiogenesis evidenced the differential recruitment of endothelial cells (EC) from early progenitors (EEPCs) to mature ECs. Hypoxia was the key parameter that selected and stabilized melanoma cancer stem like cells (CSCs) phenotype based on aldehyde dehydrogenase expression as the best criterion. The 3D-tumour-model demonstrated the distinct reactivity of ECs toward tumour cells in terms of cellular cross-talk and humoral response. Intra-spheroid cell-to-cell membrane dye exchanges, mediated by intercellular interactions, uncovered the melanoma-to-EEPC cooperation. The resulting changes in tumour milieu were evidenced by the chemokinic composition and hypoxia-related variations in microRNA expression assessed in each cellular component of the spheroids. This method brings new tools to decipher the molecular mechanism of tumour-mediated cell recruitment and for in vitro assessment of therapeutic approaches.


Assuntos
Comunicação Celular/fisiologia , Hipóxia Celular/fisiologia , Melanoma/irrigação sanguínea , Melanoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Proliferação de Células/fisiologia , Humanos , Imageamento Tridimensional , Melanoma/metabolismo , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Esferoides Celulares , Microambiente Tumoral
18.
Prog Neurobiol ; 155: 96-119, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26455458

RESUMO

There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Dopamina/metabolismo , Ferro/metabolismo , Melaninas/metabolismo , Doença de Parkinson/metabolismo , Animais , Humanos
19.
Nanomedicine ; 13(3): 801-807, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27979745

RESUMO

Nanomechanical properties of cells and tissues, in particular their elasticity, play an important role in different physiological and pathological processes. Recently, we have demonstrated that melanin granules dramatically modify nanomechanical properties of melanoma cells making them very stiff and, as a result, less aggressive. Although the mechanical effect of melanin granules was demonstrated in pathological cells, it was never studied in the case of normal cells. In this work, we analyzed the impact of melanin granules on nanomechanical properties of primary retinal pigment epithelium tissue fragments isolated from porcine eyes. The obtained results clearly show that melanin granules are responsible for the exceptional nanomechanical properties of the tissue. Our findings suggest that melanin granules in the retinal pigment epithelium may play an important role in sustaining the stiffness of this single cell layer, which functions as a natural mechanical barrier separating the retina from the choroid.


Assuntos
Elasticidade , Melaninas/análise , Melanossomas/ultraestrutura , Epitélio Pigmentado da Retina/ultraestrutura , Animais , Fenômenos Biomecânicos , Melanossomas/química , Microscopia de Força Atômica , Epitélio Pigmentado da Retina/química , Suínos
20.
Pigment Cell Melanoma Res ; 29(6): 669-678, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27505632

RESUMO

In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6-dihydroxyindole-2-carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5-S-cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time-resolved near-infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450-nm, quantum yield of singlet oxygen was very low (~10-4 ) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging.


Assuntos
Luz , Melaninas/química , Fotoquímica , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo , Aerobiose , Espectroscopia de Ressonância de Spin Eletrônica , Melaninas/efeitos da radiação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA