Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(8): 207, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452879

RESUMO

The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.


Assuntos
Neoplasias , Proteínas PrPC , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Doenças Priônicas/metabolismo , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Neoplasias/genética , Biologia , Proteínas PrPC/genética , Proteínas PrPC/metabolismo
2.
Genome Res ; 33(8): 1242-1257, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487647

RESUMO

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Chaperonas Moleculares , Neoplasias , Biossíntese de Proteínas , Humanos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/genética , Ribossomos/metabolismo , Elongação Traducional da Cadeia Peptídica/genética , Elongação Traducional da Cadeia Peptídica/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo
3.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36712063

RESUMO

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein we identify the molecular mechanisms involved, demonstrating that TRAP1: i) binds both mitochondrial and cytosolic ribosomes as well as translation elongation factors, ii) slows down translation elongation rate, and iii) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.

4.
Cancer Cell Int ; 22(1): 402, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510251

RESUMO

BACKGROUND: Metabolic reprogramming is an important issue in tumor biology. A recently-identified actor in this regard is the molecular chaperone TRAP1, that is considered an oncogene in several cancers for its high expression but an oncosuppressor in others with predominant oxidative metabolism. TRAP1 is mainly localized in mitochondria, where it interacts with respiratory complexes, although alternative localizations have been described, particularly on the endoplasmic reticulum, where it interacts with the translational machinery with relevant roles in protein synthesis regulation. RESULTS: Herein we show that, inside mitochondria, TRAP1 binds the complex III core component UQCRC2 and regulates complex III activity. This decreases respiration rate during basal conditions but allows sustained oxidative phosphorylation when glucose is limiting, a condition in which the direct TRAP1-UQCRC2 binding is disrupted, but not TRAP1-complex III binding. Interestingly, several complex III components and assembly factors show an inverse correlation with survival and response to platinum-based therapy in high grade serous ovarian cancers, where TRAP1 inversely correlates with stage and grade and directly correlates with survival. Accordingly, drug-resistant ovarian cancer cells show high levels of complex III components and high sensitivity to complex III inhibitory drug antimycin A. CONCLUSIONS: These results shed new light on the molecular mechanisms involved in TRAP1-dependent regulation of cancer cell metabolism and point out a potential novel target for metabolic therapy in ovarian cancer.

5.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924850

RESUMO

The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera's aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Fator 2 de Crescimento de Fibroblastos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocação Genética
6.
Pharmaceutics ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560359

RESUMO

Mesoporous silicon microparticles (MSMPs) can incorporate drug-carrying nanoparticles (NPs) into their pores. An NP-loaded MSMP is a multistage vector (MSV) that forms a Matryoshka-like structure that protects the therapeutic cargo from degradation and prevents its dilution in the circulation during delivery to tumor cells. We developed an MSV constituted by 1 µm discoidal MSMPs embedded with PEGylated liposomes containing oxaliplatin (oxa) which is a therapeutic agent for colorectal cancer (CRC). To obtain extra-small liposomes able to fit the 60 nm pores of MSMP, we tested several liposomal formulations, and identified two optimal compositions, with a prevalence of the rigid lipid 1,2-distearoyl-sn-glycero-3-phosphocholine and of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. To improve the MSV assembly, we optimized the liposome-loading inside the MSMP and achieved a five-fold increase of the payload using an innovative lyophilization approach. This procedure also increased the load and limited dimensional changes of the liposomes released from the MSV in vitro. Lastly, we found that the cytotoxic efficacy of oxa-loaded liposomes and-oxa-liposome-MSV in CRC cell culture was similar to that of free oxa. This study increases knowledge about extra-small liposomes and their loading into porous materials and provides useful hints about alternative strategies for designing drug-encapsulating NPs.

7.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143270

RESUMO

Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aß) production and the amyloidogenic pathway, generating Aß, whose accumulation characterizes Alzheimer's disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aß and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aß, may mediate Aß-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing. We show herein that the specific 37/67 kDa LR inhibitor, NSC48478, is able to reversibly affect the maturation of APP in a pH-dependent manner, resulting in the partial accumulation of the immature APP isoforms (unglycosylated/acetylated forms) in the endoplasmic reticulum (ER) and in transferrin-positive recycling endosomes, indicating alteration of the APP intracellular trafficking. These effects reveal NSC48478 inhibitor as a novel small molecule to be tested in disease conditions, mediated by the 37/67 kDa LR and accompanied by inactivation of ERK1/2 (extracellular signal-regulated kinases) signalling and activation of Akt (serine/threonine protein kinase) with consequent inhibition of GSK3ß.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Naftóis/farmacologia , Neurônios/metabolismo , Receptores de Laminina/antagonistas & inibidores , Proteínas Ribossômicas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/efeitos dos fármacos , Glicosilação , Complexo de Golgi/efeitos dos fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Laminina , Camundongos , Microscopia de Fluorescência , Proteínas Priônicas , Processamento de Proteína Pós-Traducional , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
8.
Cell Oncol (Dordr) ; 42(6): 829-845, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493143

RESUMO

PURPOSE: The t(4;11)(q21;q23) translocation characterizes a form of acute lymphoblastic leukemia with a poor prognosis. It results in a fusion gene encoding a chimeric transcription factor, MLL-AF4, that deregulates gene expression through a variety of still controversial mechanisms. To provide new insights into these mechanisms, we examined the interaction between AF4, the most common MLL fusion partner, and the scaffold protein 14-3-3θ, in the context of t(4;11)-positive leukemia. METHODS: Protein-protein interactions were analyzed using immunoprecipitation and in vitro binding assays, and by fluorescence microscopy in t(4;11)-positive RS4;11 and MV4-11 leukemia cells and in HEK293 cells. Protein and mRNA expression levels were determined by Western blotting and RT-qPCR, respectively. A 5-bromo-2'-deoxyuridine assay and an annexin V/propidium iodide assay were used to assess proliferation and apoptosis rates, respectively, in t(4;11)-positive and control cells. Chromatin immunoprecipitation was performed to assess binding of 14-3-3θ and AF4 to a specific promoter element. RESULTS: We found that AF4 and 14-3-3θ are nuclear interactors, that 14-3-3θ binds Ser588 of AF4 and that 14-3-3θ forms a complex with MLL-AF4. In addition, we found that in t(4;11)-positive cells, 14-3-3θ knockdown decreased the expression of MLL-AF4 target genes, induced apoptosis and hampered cell proliferation. Moreover, we found that 14-3-3θ knockdown impaired the recruitment of AF4, but not of MLL-AF4, to target chromatin. Overall, our data indicate that the activity of the chimeric transcription factor MLL-AF4 depends on the cellular availability of 14-3-3θ, which triggers the transactivating function and subsequent degradation of AF4. CONCLUSIONS: From our data we conclude that the scaffold protein 14-3-3θ enhances the aberrant activity of the chimeric transcription factor MLL-AF4 and, therefore, represents a new player in the molecular pathogenesis of t(4;11)-positive leukemia and a new promising therapeutic target.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Fatores de Elongação da Transcrição/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular/genética , DNA Complementar/genética , Proteínas de Ligação a DNA/química , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Biológicos , Proteína Meis1/genética , Proteína Meis1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Serina/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Translocação Genética
9.
Cell Cycle ; 18(13): 1446-1457, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31116627

RESUMO

Glioblastoma (GBM) is a lethal, fast-growing brain cancer, affecting 2-3 per 100,000 adults per year. It arises from multipotent neural stem cells which have reduced their ability to divide asymmetrically and hence divide symmetrically, generating increasing number of cancer stem cells, fostering tumor growth. We have previously demonstrated that the architectural transcription factor HMGA1 is highly expressed in brain tumor stem cells (BTSCs) and that its silencing increases stem cell quiescence, reduces self-renewal and sphere-forming efficiency in serial passages, suggesting a shift from symmetric to asymmetric division. Since NUMB expression is fundamental for the fulfillment of asymmetric division in stem cells, and is lost or reduced in many tumors, including GBM, we have investigated the ability of HMGA1 to regulate NUMB expression. Here, we show that HMGA1 negatively regulates NUMB expression at transcriptional level, by binding its promoter and counteracting c/EBP-ß and at posttranscriptional level, by regulating the expression of MSI1 and of miR-146a. Finally, we report that HMGA1 knockdown-induced NUMB upregulation leads to the downregulation of the NOTCH1 pathway. Therefore, the data reported here indicate that HMGA1 negatively regulates NUMB expression in BTSCs, further supporting HMGA1 targeting as innovative and effective anti-cancer therapy.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Proteína HMGA1a/genética , Proteínas de Membrana/genética , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Processamento Pós-Transcricional do RNA/genética , Transcrição Gênica/genética , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Divisão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/genética , Glioblastoma/patologia , Células HEK293 , Humanos , MicroRNAs/genética , Células-Tronco Multipotentes/patologia , Regiões Promotoras Genéticas/genética
10.
Nucleic Acids Res ; 46(22): 12067-12086, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30260431

RESUMO

Syndesmos (SDOS) is a functionally poorly characterized protein that directly interacts with p53 binding protein 1 (53BP1) and regulates its recruitment to chromatin. We show here that SDOS interacts with another important cancer-linked protein, the chaperone TRAP1, associates with actively translating polyribosomes and represses translation. Moreover, we demonstrate that SDOS directly binds RNA in living cells. Combining individual gene expression profiling, nucleotide crosslinking and immunoprecipitation (iCLIP), and ribosome profiling, we discover several crucial pathways regulated post-transcriptionally by SDOS. Among them, we identify a small subset of mRNAs responsible for the biogenesis of primary cilium that have been linked to developmental and degenerative diseases, known as ciliopathies, and cancer. We discover that SDOS binds and regulates the translation of several of these mRNAs, controlling cilia development.


Assuntos
Cílios/genética , Proteínas de Ligação a RNA/fisiologia , Cílios/metabolismo , Ciliopatias/genética , Células HCT116 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Neoplasias/genética , Polirribossomos/metabolismo , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
11.
Int J Mol Sci ; 19(7)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954118

RESUMO

The H1069Q substitution is the most frequent mutation of the Cu transporter ATP7B that causes Wilson disease in the Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes, but, in the presence of excessive Cu, it relocates to the endo-lysosomal compartment to excrete Cu via bile canaliculi. In contrast, ATP7B-H1069Q is strongly retained in the ER, does not reach the Golgi complex and fails to move to the endo-lysosomal compartment in the presence of excessive Cu, thus causing toxic Cu accumulation. We have previously shown that, in transfected cells, the small heat-shock protein αB-crystallin is able to correct the mislocalization of ATP7B-H1069Q and its trafficking in the presence of Cu overload. Here, we first show that the α-crystallin domain of αB-crystallin mimics the effect of the full-length protein, whereas the N- and C-terminal domains have no such effect. Next, and most importantly, we demonstrate that a twenty-residue peptide derived from the α-crystallin domain of αB-crystallin fully rescues Golgi localization and the trafficking response of ATP7B-H1069Q in the presence of Cu overload. In addition, we show that this peptide interacts with the mutant transporter in the live cell. These results open the way to attempt developing a pharmacologically active peptide to specifically contrast the Wilson disease form caused by the ATP7B-H1069Q mutant.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Degeneração Hepatolenticular/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Cadeia B de alfa-Cristalina/química , Animais , Células COS , Chlorocebus aethiops , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Transporte Proteico/efeitos dos fármacos , População Branca
12.
Nanomedicine ; 14(2): 483-491, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175599

RESUMO

Nanoparticles (NPs) are a promising tool for in vivo multimodality imaging and theranostic applications. Hyaluronic acid (HA)-based NPs have numerous active groups that make them ideal as tumor-targeted carriers. The B-lymphoma neoplastic cells express on their surfaces a clone-specific immunoglobulin receptor (Ig-BCR). The peptide A20-36 (pA20-36) selectively binds to the Ig-BCR of A20 lymphoma cells. In this work, we demonstrated the ability of core-shell chitosan-HA-NPs decorated with pA20-36 to specifically target A20 cells and reduce the tumor burden in a murine xenograft model. We monitored tumor growth using high-frequency ultrasonography and demonstrated targeting specificity and kinetics of the NPs via in vivo fluorescent reflectance imaging. This result was also confirmed by ex vivo magnetic resonance imaging and confocal microscopy. In conclusion, we demonstrated the ability of NPs loaded with fluorescent and paramagnetic tracers to act as multimodal imaging contrast agents and hence as a non-toxic, highly specific theranostic system.


Assuntos
Linfoma de Células B/tratamento farmacológico , Imagem Multimodal/métodos , Nanopartículas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Nanomedicina Teranóstica , Animais , Quitosana/química , Humanos , Ácido Hialurônico/química , Linfoma de Células B/diagnóstico por imagem , Linfoma de Células B/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Fragmentos de Peptídeos/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Pept Sci ; 23(4): 303-310, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28078813

RESUMO

'Privileged scaffolds' are molecular frameworks which have been successfully exploited for small molecule drug discovery. Peptide privileged scaffolds, featuring a strictly conserved multiple-disulfide framework and high variability in the rest of the sequence, display a broad range of biological effects, including antimicrobial and antiviral activity. Unlike small molecules, however, the cost of manufacturing these peptides is high, and their synthesis challenging. We previously described a simplified privileged scaffold corresponding to the γ-core of human ß-defensin-3 (HBD3). The γ-core is a common structural signature found in virtually all host defense peptides (HDPs) stabilized by multiple disulfides, and we showed that for HBD3, it represents the evolutionary starting point of the full-length molecule and, thus, is itself a primordial HDP. Accordingly, we showed that the peptide folded rapidly and was stable in human serum, and displayed many of the biological activities of HBD3. We report here that in addition to the previously reported antibacterial activity on planktonic bacteria, the γ-core peptide is active against biofilm formation and maturation. We also show that it is readily cell penetrant, like HBD3, although with a different mechanism, which is independent from CD98. Overall, the potency of the single-disulfide, 23-amino acid γ-core is comparable with the full-length peptide across the whole spectrum of examined properties, and the peptide is not toxic to human cells. The HBD3 γ-core peptide may therefore represent the first example of an economically viable lead peptide derived from a HDP privileged scaffold. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , beta-Defensinas/química , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
14.
Expert Opin Ther Targets ; 20(10): 1169-79, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27486901

RESUMO

OBJECTIVE: Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. RESEARCH DESIGN AND METHODS: We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. RESULTS: We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. CONCLUSIONS: These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/genética , Proteína HMGA1a/genética , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , RNA Interferente Pequeno/genética , Temozolomida
15.
Arch Biochem Biophys ; 603: 10-9, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27177968

RESUMO

Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS.


Assuntos
Núcleo Celular/enzimologia , Neoplasias/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutagênese , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
16.
Am J Gastroenterol ; 111(6): 879-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27045926

RESUMO

OBJECTIVES: Celiac disease (CD)-associated duodenal dysbiosis has not yet been clearly defined, and the mechanisms by which CD-associated dysbiosis could concur to CD development or exacerbation are unknown. In this study, we analyzed the duodenal microbiome of CD patients. METHODS: The microbiome was evaluated in duodenal biopsy samples of 20 adult patients with active CD, 6 CD patients on a gluten-free diet, and 15 controls by DNA sequencing of 16S ribosomal RNA libraries. Bacterial species were cultured, isolated and identified by mass spectrometry. Isolated bacterial species were used to infect CaCo-2 cells, and to stimulate normal duodenal explants and cultured human and murine dendritic cells (DCs). Inflammatory markers and cytokines were evaluated by immunofluorescence and ELISA, respectively. RESULTS: Proteobacteria was the most abundant and Firmicutes and Actinobacteria the least abundant phyla in the microbiome profiles of active CD patients. Members of the Neisseria genus (Betaproteobacteria class) were significantly more abundant in active CD patients than in the other two groups (P=0.03). Neisseria flavescens (CD-Nf) was the most abundant Neisseria species in active CD duodenum. Whole-genome sequencing of CD-Nf and control-Nf showed genetic diversity of the iron acquisition systems and of some hemoglobin-related genes. CD-Nf was able to escape the lysosomal compartment in CaCo-2 cells and to induce an inflammatory response in DCs and in ex-vivo mucosal explants. CONCLUSIONS: Marked dysbiosis and an abundance of a peculiar CD-Nf strain characterize the duodenal microbiome in active CD patients thus suggesting that the CD-associated microbiota could contribute to the many inflammatory signals in this disorder.


Assuntos
Doença Celíaca/microbiologia , Duodeno/microbiologia , Disbiose/microbiologia , Metagenômica , Neisseria/isolamento & purificação , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Adulto , Biópsia , Células CACO-2 , Dieta Livre de Glúten , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Itália , Masculino , Microbiota , Neisseria/classificação , Proteobactérias/classificação , Proteobactérias/isolamento & purificação
17.
Sci Rep ; 5: 18450, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26688341

RESUMO

Host defence peptides (HDPs) are critical components of innate immunity. Despite their diversity, they share common features including a structural signature, designated "γ-core motif". We reasoned that for each HDPs evolved from an ancestral γ-core, the latter should be the evolutionary starting point of the molecule, i.e. it should represent a structural scaffold for the modular construction of the full-length molecule, and possess biological properties. We explored the γ-core of human ß-defensin 3 (HBD3) and found that it: (a) is the folding nucleus of HBD3; (b) folds rapidly and is stable in human serum; (c) displays antibacterial activity; (d) binds to CD98, which mediates HBD3 internalization in eukaryotic cells; (e) exerts antiviral activity against human immunodeficiency virus and herpes simplex virus; and (f) is not toxic to human cells. These results demonstrate that the γ-core within HBD3 is the ancestral core of the full-length molecule and is a viable HDP per se, since it is endowed with the most important biological features of HBD3. Notably, the small, stable scaffold of the HBD3 γ-core can be exploited to design disease-specific antimicrobial agents.


Assuntos
Motivos de Aminoácidos/genética , Anti-Infecciosos/metabolismo , Imunidade Inata/genética , beta-Defensinas/metabolismo , Anti-Infecciosos/uso terapêutico , Antivirais/metabolismo , Antivirais/uso terapêutico , Proteína-1 Reguladora de Fusão/química , Proteína-1 Reguladora de Fusão/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Simplexvirus/efeitos dos fármacos , beta-Defensinas/química , beta-Defensinas/genética
18.
FASEB J ; 29(11): 4614-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220173

RESUMO

In immunoglobulin (Ig) light-chain (LC) (AL) amyloidosis, AL deposition translates into life-threatening cardiomyopathy. Clinical and experimental evidence indicates that soluble cardiotoxic LCs are themselves harmful for cells, by which they are internalized. Hypothesizing that interaction of soluble cardiotoxic LCs with cellular proteins contributes to damage, we characterized their interactome in cardiac cells. LCs were purified from patients with AL amyloidosis cardiomyopathy or multiple myeloma without amyloidosis (the nonamyloidogenic/noncardiotoxic LCs served as controls) and employed at concentrations in the range observed in AL patients' sera. A functional proteomic approach, based on direct and inverse coimmunoprecipitation and mass spectrometry, allowed identifying LC-protein complexes. Findings were validated by colocalization, fluorescence lifetime imaging microscopy (FLIM)-fluorescence resonance energy transfer (FRET), and ultrastructural studies, using human primary cardiac fibroblasts (hCFs) and stem cell-derived cardiomyocytes. Amyloidogenic cardiotoxic LCs interact in vitro with specific intracellular proteins involved in viability and metabolism. Imaging confirmed that, especially in hCFs, cardiotoxic LCs (not controls) colocalize with mitochondria and spatially associate with selected interactors: mitochondrial optic atrophy 1-like protein and peroxisomal acyl-coenzyme A oxidase 1 (FLIM-FRET efficiencies 11 and 6%, respectively). Cardiotoxic LC-treated hCFs display mitochondrial ultrastructural changes, supporting mitochondrial involvement. We show that cardiotoxic LCs establish nonphysiologic protein-protein contacts in human cardiac cells, offering new clues on the pathogenesis of AL cardiomyopathy.


Assuntos
Amiloidose/metabolismo , Fibroblastos/metabolismo , Cardiopatias/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Adulto , Amiloidose/patologia , Animais , Feminino , Fibroblastos/patologia , Cardiopatias/patologia , Humanos , Masculino , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
19.
Nat Chem Biol ; 11(4): 280-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751279

RESUMO

Upon binding, ligands can chaperone their protein targets by preventing them from misfolding and aggregating. Thus, an organic molecule that works as folding chaperone for a protein might be its specific ligand, and, similarly, the chaperone potential could represent an alternative readout in a molecular screening campaign toward the identification of new hits. Here we show that small molecules selected for acting as pharmacological chaperones on a misfolded mutant of the Frizzled4 (Fz4) receptor bind and modulate wild-type Fz4, representing what are to our knowledge the first organic ligands of this until-now-undruggable GPCR. The novelty and the advantages of the screening platform, the allosteric binding site addressed by these new ligands and the mechanism they use to modulate Fz4 suggest new avenues for development of inhibitors of the Wnt-ß-catenin pathway and for drug discovery.


Assuntos
Receptores Frizzled/química , Chaperonas Moleculares/química , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Glicerol/química , Células HEK293 , Células HeLa , Humanos , Ligantes , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Dobramento de Proteína , Receptores Acoplados a Proteínas G/química
20.
Biomed Res Int ; 2015: 674920, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793203

RESUMO

Carbonic anhydrase IX (CA IX) is a surrogate marker of hypoxia, involved in survival and pH regulation in hypoxic cells. We have recently characterized its interactome, describing a set of proteins interacting with CA IX, mainly in hypoxic cells, including several members of the nucleocytoplasmic shuttling apparatuses. Accordingly, we described complex subcellular localization for this enzyme in human cells, as well as the redistribution of a carbonic anhydrase IX pool to nucleoli during hypoxia. Starting from this evidence, we analyzed the possible contribution of carbonic anhydrase IX to transcription of the 45 S rDNA genes, a process occurring in nucleoli. We highlighted the binding of carbonic anhydrase IX to nucleolar chromatin, which is regulated by oxygen levels. In fact, CA IX was found on 45 S rDNA gene promoters in normoxic cells and less represented on these sites, in hypoxic cells and in cells subjected to acetazolamide-induced acidosis. Both conditions were associated with increased representation of carbonic anhydrase IX/exportin-1 complexes in nucleoli. 45 S rRNA transcript levels were accordingly downrepresented. Inhibition of nuclear export by leptomycin B suggests a model in which exportin-1 acts as a decoy, in hypoxic cells, preventing carbonic anhydrase IX association with 45 S rDNA gene promoters.


Assuntos
Antígenos de Neoplasias/metabolismo , Anidrases Carbônicas/metabolismo , Hipóxia Celular/fisiologia , DNA Ribossômico/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Acidose/genética , Acidose/metabolismo , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Anidrase Carbônica IX , Anidrases Carbônicas/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Ribossômico/genética , Células HEK293 , Humanos , Carioferinas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Transcrição Gênica/genética , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA