RESUMO
A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.
Assuntos
Dano ao DNA , Genômica , Humanos , Genômica/métodos , Dano ao DNA/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Morte Celular/efeitos dos fármacos , Morte Celular/genéticaRESUMO
BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.
Assuntos
Proteínas Sanguíneas , Cistadenocarcinoma Seroso , Galectina 3 , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Prognóstico , Animais , Camundongos , Galectinas/genética , Galectinas/metabolismo , Movimento CelularRESUMO
Environmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis. Recent discoveries reveal that dynamic regulation of apoptosis may heighten the vulnerability of healthy tissues to exposures in children, and that apoptotic signaling can guide immune responses, tissue repair, and tumorigenesis. Understanding how environmental toxicants dysregulate apoptosis will uncover opportunities to deploy apoptosis-modulating agents for the treatment or prevention of exposure-linked diseases.
Assuntos
Apoptose , Neoplasias , Criança , Humanos , Apoptose/fisiologia , Exposição Ambiental/efeitos adversos , Neoplasias/etiologia , Avaliação de Resultados em Cuidados de Saúde , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Background: The introduction of magnetic resonance (MR)-guided radiation treatment planning has opened a new space for theranostic nanoparticles to reduce acute toxicity while improving local control. In this work, second-generation AGuIX® nanoparticles (AGuIX-Bi) are synthesized and validated. AGuIX-Bi are shown to maintain MR positive contrast while further amplifying the radiation dose by the replacement of some Gd3+ cations with higher Z Bi3+. These next-generation nanoparticles are based on the AGuIX® platform, which is currently being evaluated in multiple Phase II clinical trials in combination with radiotherapy. Methods: In this clinically scalable methodology, AGuIX® is used as an initial chelation platform to exchange Gd3+ for Bi3+. AGuIX-Bi nanoparticles are synthesized with three ratios of Gd/Bi, each maintaining MR contrast while further amplifying radiation dose relative to Bi3+. Safety, efficacy, and theranostic potential of the nanoparticles were evaluated in vitro and in vivo in a human non-small cell lung cancer model. Results: We demonstrated that increasing Bi3+ in the nanoparticles is associated with more DNA damage and improves in vivo efficacy with a statistically significant delay in tumor growth and 33% complete regression for the largest Bi/Gd ratio tested. The addition of Bi3+ by our synthetic method leads to nanoparticles that present slightly altered pharmacokinetics and lengthening of the period of high tumor accumulation with no observed evidence of toxicity. Conclusions: We confirmed the safety and enhanced efficacy of AGuIX-Bi with radiation therapy at the selected ratio of 30Gd/70Bi. These results provide crucial evidence towards patient translation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Medicina de Precisão , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Doses de Radiação , Nanomedicina Teranóstica/métodosRESUMO
Although external beam radiotherapy (xRT) is commonly used to treat central nervous system (CNS) tumors in patients of all ages, young children treated with xRT frequently experience life-altering and dose-limiting neurocognitive impairment (NI) while adults do not. The lack of understanding of mechanisms responsible for these differences has impeded the development of neuroprotective treatments. Using a newly developed mouse model of xRT-induced NI, we found that neurocognitive function is impaired by ionizing radiation in a dose- and age-dependent manner, with the youngest animals being most affected. Histologic analysis revealed xRT-driven neuronal degeneration and cell death in neurogenic brain regions in young animals but not adults. BH3 profiling showed that neural stem and progenitor cells, neurons, and astrocytes in young mice are highly primed for apoptosis, rendering them hypersensitive to genotoxic damage. Analysis of single-cell RNA sequencing data revealed that neural cell vulnerability stems from heightened expression of proapoptotic genes including BAX, which is associated with developmental and mitogenic signaling by MYC. xRT induced apoptosis in primed neural cells by triggering a p53- and PUMA-initiated, proapoptotic feedback loop requiring cleavage of BID and culminating in BAX oligomerization and caspase activation. Notably, loss of BAX protected against apoptosis induced by proapoptotic signaling in vitro and prevented xRT-induced apoptosis in neural cells in vivo as well as neurocognitive sequelae. On the basis of these findings, preventing xRT-induced apoptosis specifically in immature neural cells by blocking BAX, BIM, or BID via direct or upstream mechanisms is expected to ameliorate NI in pediatric patients with CNS tumor. SIGNIFICANCE: Age- and differentiation-dependent apoptotic priming plays a pivotal role in driving radiotherapy-induced neurocognitive impairment and can be targeted for neuroprotection in pediatric patients.
Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Animais , Criança , Pré-Escolar , Humanos , Camundongos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína X Associada a bcl-2/metabolismo , Morte Celular , Transdução de Sinais , Proteína Supressora de Tumor p53/genéticaRESUMO
The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Apoptosis is important for development and tissue homeostasis, and its dysregulation can lead to diseases, including cancer. As an apoptotic effector, BAK undergoes conformational changes that promote mitochondrial outer membrane disruption, leading to cell death. This is termed "activation" and can be induced by peptides from the human proteins BID, BIM, and PUMA. To identify additional peptides that can regulate BAK, we used computational protein design, yeast surface display screening, and structure-based energy scoring to identify 10 diverse new binders. We discovered peptides from the human proteins BNIP5 and PXT1 and three non-native peptides that activate BAK in liposome assays and induce cytochrome c release from mitochondria. Crystal structures and binding studies reveal a high degree of similarity among peptide activators and inhibitors, ruling out a simple function-determining property. Our results shed light on the vast peptide sequence space that can regulate BAK function and will guide the design of BAK-modulating tools and therapeutics.
Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas , Humanos , Proteínas Proto-Oncogênicas/química , Proteínas Reguladoras de Apoptose/química , Proteína 11 Semelhante a Bcl-2 , Proteína bcl-X/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Apoptose/fisiologia , Peptídeos , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/químicaRESUMO
Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Evasão da Resposta Imune , Imunoterapia , Proteínas Serina-Treonina Quinases , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Organoides , Fatores de Necrose Tumoral/imunologia , Interferon gama/imunologia , Esferoides Celulares , Caspases , Janus Quinases , Fatores de Transcrição STATRESUMO
Although major organ toxicities frequently arise in patients treated with cytotoxic or targeted cancer therapies, the mechanisms that drive them are poorly understood. Here, we report that vascular endothelial cells (ECs) are more highly primed for apoptosis than parenchymal cells across many adult tissues. Consequently, ECs readily undergo apoptosis in response to many commonly used anticancer agents including cytotoxic and targeted drugs and are more sensitive to ionizing radiation and BH3 mimetics than parenchymal cells in vivo. Further, using differentiated isogenic human induced pluripotent stem cell models of ECs and vascular smooth muscle cells (VSMCs), we find that these vascular cells exhibit distinct drug toxicity patterns, which are linked to divergent therapy-induced vascular toxicities in patients. Collectively, our results demonstrate that vascular cells are highly sensitive to apoptosis-inducing stress across life span and may represent a "weakest link" vulnerability in multiple tissues for development of toxicities.
Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Adulto , Humanos , Músculo Liso Vascular/fisiologia , Células Endoteliais , Longevidade , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Cultivadas , Neoplasias/etiologiaRESUMO
mTORC1 is aberrantly activated in cancer and in the genetic tumor syndrome tuberous sclerosis complex (TSC), which is caused by loss-of-function mutations in the TSC complex, a negative regulator of mTORC1. Clinically approved mTORC1 inhibitors, such as rapamycin, elicit a cytostatic effect that fails to eliminate tumors and is rapidly reversible. We sought to determine the effects of mTORC1 on the core regulators of intrinsic apoptosis. In TSC2-deficient cells and tumors, we find that mTORC1 inhibitors shift cellular dependence from MCL-1 to BCL-2 and BCL-XL for survival, thereby altering susceptibility to BH3 mimetics that target specific pro-survival BCL-2 proteins. The BCL-2/BCL-XL inhibitor ABT-263 synergizes with rapamycin to induce apoptosis in TSC-deficient cells and in a mouse tumor model of TSC, resulting in a more complete and durable response. These data expose a therapeutic vulnerability in regulation of the apoptotic machinery downstream of mTORC1 that promotes a cytotoxic response to rapamycin.
RESUMO
Immunoglobulin light chain (AL) amyloidosis is an incurable hematologic disorder typically characterized by the production of amyloidogenic light chains by clonal plasma cells. These light chains misfold and aggregate in healthy tissues as amyloid fibrils, leading to life-threatening multi-organ dysfunction. Here we show that the clonal plasma cells in AL amyloidosis are highly primed to undergo apoptosis and dependent on pro-survival proteins MCL-1 and BCL-2. Notably, this MCL-1 dependency is indirectly targeted by the proteasome inhibitor bortezomib, currently the standard of care for this disease and the related plasma cell disorder multiple myeloma, due to upregulation of pro-apoptotic Noxa and its inhibitory binding to MCL-1. BCL-2 inhibitors sensitize clonal plasma cells to multiple front-line therapies including bortezomib, dexamethasone and lenalidomide. Strikingly, in mice bearing AL amyloidosis cell line xenografts, single agent treatment with the BCL-2 inhibitor ABT-199 (venetoclax) produces deeper remissions than bortezomib and triples median survival. Mass spectrometry-based proteomic analysis reveals rewiring of signaling pathways regulating apoptosis, proliferation and mitochondrial metabolism between isogenic AL amyloidosis and multiple myeloma cells that divergently alter their sensitivity to therapies. These findings provide a roadmap for the use of BH3 mimetics to exploit endogenous and induced apoptotic vulnerabilities in AL amyloidosis.
Assuntos
Antineoplásicos , Amiloidose de Cadeia Leve de Imunoglobulina , Mieloma Múltiplo , Amiloide/uso terapêutico , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Humanos , Cadeias Leves de Imunoglobulina , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteassoma , Proteômica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , SulfonamidasRESUMO
PURPOSE: Advanced/metastatic forms of clear-cell renal cell carcinomas (ccRCC) have limited therapeutic options. Genome-wide genetic screens have identified cellular dependencies in many cancers. Using the Broad Institute/Novartis combined short hairpin RNA (shRNA) dataset, and cross-validation with the CRISPR/Cas9 DepMap (21Q3) dataset, we sought therapeutically actionable dependencies in kidney lineage cancers. EXPERIMENTAL DESIGN: We identified preferential genetic dependencies in kidney cancer cells versus other lineages. BCL2L1, which encodes the BCL-XL antiapoptotic protein, scored as the top actionable dependency. We validated this finding using genetic and pharmacologic tools in a panel of ccRCC cell lines. Select BCL-XL-dependent (versus independent) cell lines were then transcriptionally profiled to identify biomarkers and mechanistic drivers of BCL-XL dependence. Cell-based studies (in vitro and in vivo) and clinical validations were used to address physiologic relevance. RESULTS: Inactivation of BCL-XL, but not BCL-2, led to fitness defects in renal cancer cells, and sensitized them to chemotherapeutics. Transcriptomic profiling identified a "BCL-XL dependency" signature, including an elevated mesenchymal gene signature. A mesenchymal state was both necessary and sufficient to confer increased BCL-XL dependence. The "BCL-XL dependency" signature was observed in approximately 30% of human ccRCCs, which were also associated with worse clinical outcomes. Finally, an orally bioavailable BCL-XL inhibitor, A-1331852, showed antitumor efficacy in vivo. CONCLUSIONS: Our studies uncovered an unexpected link between cell state and BCL-XL dependence in ccRCC. Therapeutic agents that specifically target BCL-XL are available. Our work justifies testing the utility of BCL-XL blockade to target, likely, a clinically aggressive subset of human kidney cancers. See related commentary by Wang et al., p. 4600.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , RNA Interferente PequenoRESUMO
Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.
Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Humanos , Mitocôndrias , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
Under proteotoxic stress, some cells survive whereas others die. The mechanisms governing this heterogeneity in cell fate remain unknown. Here we report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones1,2, is integral to cell-fate decisions underlying survival or death. During stress, HSF1 drives chaperone expression but also accumulates separately in nuclear stress bodies called foci3-6. Foci formation has been regarded as a marker of cells actively upregulating chaperones3,6-10. Using multiplexed tissue imaging, we observed HSF1 foci in human tumours. Paradoxically, their presence inversely correlated with chaperone expression. By live-cell microscopy and single-cell analysis, we found that foci dissolution rather than formation promoted HSF1 activity and cell survival. During prolonged stress, the biophysical properties of HSF1 foci changed; small, fluid condensates enlarged into indissoluble gel-like arrangements with immobilized HSF1. Chaperone gene induction was reduced in such cells, which were prone to apoptosis. Quantitative analysis suggests that survival under stress results from competition between concurrent but opposing mechanisms. Foci may serve as sensors that tune cytoprotective responses, balancing rapid transient responses and irreversible outcomes.
Assuntos
Adaptação Fisiológica/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transição de Fase , Transdução de Sinais , Análise de Célula Única , Transcrição GênicaRESUMO
BACKGROUND: Amorphous silica nanoparticles (SiO2 NPs) have been regarded as relatively benign nanomaterials, however, this widely held opinion has been questioned in recent years by several reports on in vitro and in vivo toxicity. Surface chemistry, more specifically the surface silanol content, has been identified as an important toxicity modulator for SiO2 NPs. Here, quantitative relationships between the silanol content on SiO2 NPs, free radical generation and toxicity have been identified, with the purpose of synthesizing safer-by-design fumed silica nanoparticles. RESULTS: Consistent and statistically significant trends were seen between the total silanol content, cell membrane damage, and cell viability, but not with intracellular reactive oxygen species (ROS), in the macrophages RAW264.7. SiO2 NPs with lower total silanol content exhibited larger adverse cellular effects. The SAEC epithelial cell line did not show any sign of toxicity by any of the nanoparticles. Free radical generation and surface reactivity of these nanoparticles were also influenced by the temperature of combustion and total silanol content. CONCLUSION: Surface silanol content plays an important role in cellular toxicity and surface reactivity, although it might not be the sole factor influencing fumed silica NP toxicity. It was demonstrated that synthesis conditions for SiO2 NPs influence the type and quantity of free radicals, oxidative stress, nanoparticle interaction with the biological milieu they come in contact with, and determine the specific mechanisms of toxicity. We demonstrate here that it is possible to produce much less toxic fumed silicas by modulating the synthesis conditions.
Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Silanos/toxicidade , Dióxido de Silício/toxicidade , Animais , Técnicas de Cultura de Células , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio , Silanos/química , Dióxido de Silício/química , Propriedades de SuperfícieRESUMO
High-grade serous ovarian cancer (HGSOC) is often sensitive to initial treatment with platinum and taxane combination chemotherapy, but most patients relapse with chemotherapy-resistant disease. To systematically identify genes modulating chemotherapy response, we performed pooled functional genomic screens in HGSOC cell lines treated with cisplatin, paclitaxel, or cisplatin plus paclitaxel. Genes in the intrinsic pathway of apoptosis were among the top candidate resistance genes in both gain-of-function and loss-of-function screens. In an open reading frame overexpression screen, followed by a mini-pool secondary screen, anti-apoptotic genes including BCL2L1 (BCL-XL) and BCL2L2 (BCL-W) were associated with chemotherapy resistance. In a CRISPR-Cas9 knockout screen, loss of BCL2L1 decreased cell survival whereas loss of proapoptotic genes promoted resistance. To dissect the role of individual anti-apoptotic proteins in HGSOC chemotherapy response, we evaluated overexpression or inhibition of BCL-2, BCL-XL, BCL-W, and MCL1 in HGSOC cell lines. Overexpression of anti-apoptotic proteins decreased apoptosis and modestly increased cell viability upon cisplatin or paclitaxel treatment. Conversely, specific inhibitors of BCL-XL, MCL1, or BCL-XL/BCL-2, but not BCL-2 alone, enhanced cell death when combined with cisplatin or paclitaxel. Anti-apoptotic protein inhibitors also sensitized HGSOC cells to the poly (ADP-ribose) polymerase inhibitor olaparib. These unbiased screens highlight anti-apoptotic proteins as mediators of chemotherapy resistance in HGSOC, and support inhibition of BCL-XL and MCL1, alone or combined with chemotherapy or targeted agents, in treatment of primary and recurrent HGSOC. IMPLICATIONS: Anti-apoptotic proteins modulate drug resistance in ovarian cancer, and inhibitors of BCL-XL or MCL1 promote cell death in combination with chemotherapy.
Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias Ovarianas/genética , Proteína bcl-X/antagonistas & inibidores , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Genômica , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMO
The extraordinary activity of high-dose cyclophosphamide against some high-grade lymphomas was described nearly 60 years ago. Here we address mechanisms that mediate cyclophosphamide activity in bona fide human double-hit lymphoma. We show that antibody resistance within the bone marrow (BM) is not present upon early engraftment but develops during lymphoma progression. This resistance required a high tumor:macrophage ratio, was recapitulated in spleen by partial macrophage depletion, and was overcome by multiple, high-dose alkylating agents. Cyclophosphamide induced endoplasmic reticulum (ER) stress in BM-resident lymphoma cells in vivo that resulted in ATF4-mediated paracrine secretion of VEGFA, massive macrophage infiltration, and clearance of alemtuzumab-opsonized cells. BM macrophages isolated after cyclophosphamide treatment had increased phagocytic capacity that was reversed by VEGFA blockade or SYK inhibition. Single-cell RNA sequencing of these macrophages identified a "super-phagocytic" subset that expressed CD36/FCGR4. Together, these findings define a novel mechanism through which high-dose alkylating agents promote macrophage-dependent lymphoma clearance. SIGNIFICANCE: mAbs are effective against only a small subset of cancers. Herein, we recapitulate compartment-specific antibody resistance and define an ER stress-dependent mechanism induced by high-dose alkylating agents that promotes phagocytosis of opsonized tumor cells. This approach induces synergistic effects with mAbs and merits testing across additional tumor types.See related commentary by Duval and De Palma, p. 834.This article is highlighted in the In This Issue feature, p. 813.
Assuntos
Alemtuzumab/metabolismo , Alquilantes/administração & dosagem , Ciclofosfamida/administração & dosagem , Linfoma de Células B/tratamento farmacológico , Animais , Anticorpos Monoclonais/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Distribuição Aleatória , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Assuntos
Morte Celular/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/imunologia , Animais , Humanos , Neoplasias/terapiaRESUMO
BH3 mimetic drugs, which inhibit prosurvival BCL2 family proteins, have limited single-agent activity in solid tumor models. The potential of BH3 mimetics for these cancers may depend on their ability to potentiate the apoptotic response to chemotherapy and targeted therapies. Using a novel class of potent and selective MCL1 inhibitors, we demonstrate that concurrent MEK + MCL1 inhibition induces apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer (NSCLC) models, which respond poorly to MEK inhibition alone. Susceptibility to BH3 mimetics that target either MCL1 or BCL-xL was determined by the differential binding of proapoptotic BCL2 proteins to MCL1 or BCL-xL, respectively. The efficacy of dual MEK + MCL1 blockade was augmented by prior transient exposure to BCL-xL inhibitors, which promotes the binding of proapoptotic BCL2 proteins to MCL1. This suggests a novel strategy for integrating BH3 mimetics that target different BCL2 family proteins for KRAS-mutant NSCLC. SIGNIFICANCE: Defining the molecular basis for MCL1 versus BCL-xL dependency will be essential for effective prioritization of BH3 mimetic combination therapies in the clinic. We discover a novel strategy for integrating BCL-xL and MCL1 inhibitors to drive and subsequently exploit apoptotic dependencies of KRAS-mutant NSCLCs treated with MEK inhibitors.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Células A549 , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.