Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409075

RESUMO

Pituitary adenylate cyclase activating polypeptide-38 (PACAP-38) is a multifunctional neuropeptide, which may play a role in cardioprotection. However, little is known about the presence of PACAP-38 in heart failure (HF) patients. The aim of our study was to measure the alterations of PACAP-38 like immunoreactivity (LI) in acute (n = 13) and chronic HF (n = 33) and to examine potential correlations between PACAP-38 and HF predictors (cytokines, NT-proBNP). Tissue PACAP-38 LI and PAC1 receptor levels were also investigated in heart tissue samples of patients with HF. Significantly higher plasma PACAP-38 LI was detected in patients with acute HF, while in chronic HF patients, a lower level of immunoreactivity was observed compared to healthy controls (n = 13). Strong negative correlation was identified between plasma PACAP-38 and NT-proBNP levels in chronic HF, as opposed to the positive connection seen in the acute HF group. Plasma IL-1 ß, IL-2 and IL-4 levels were significantly lower in chronic HF, and IL-10 was significantly higher in patients with acute HF. PACAP-38 levels of myocardial tissues were lower in all end-stage HF patients and lower PAC1 receptor levels were detected in the primary dilated cardiomyopathy group compared to the controls. We conclude that PACAP-38 and PAC1 expression correlates with some biomarkers of acute and chronic HF; therefore, further studies are necessary to explore whether PACAP could be a suitable prognostic biomarker in HF patients.


Assuntos
Insuficiência Cardíaca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Miocárdio/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809145

RESUMO

Acute myocardial infarction (MI) is one of the most common causes of death worldwide. Pituitary adenylate cyclase activating polypeptide (PACAP) is a cardioprotective neuropeptide expressing its receptors in the cardiovascular system. The aim of our study was to examine tissue PACAP-38 in a translational porcine MI model and plasma PACAP-38 levels in patients with ST-segment elevation myocardial infarction (STEMI). Significantly lower PACAP-38 levels were detected in the non-ischemic region of the left ventricle (LV) in MI heart compared to the ischemic region of MI-LV and also to the Sham-operated LV in porcine MI model. In STEMI patients, plasma PACAP-38 level was significantly higher before percutaneous coronary intervention (PCI) compared to controls, and decreased after PCI. Significant negative correlation was found between plasma PACAP-38 and troponin levels. Furthermore, a significant effect was revealed between plasma PACAP-38, hypertension and HbA1c levels. This was the first study showing significant changes in cardiac tissue PACAP levels in a porcine MI model and plasma PACAP levels in STEMI patients. These results suggest that PACAP, due to its cardioprotective effects, may play a regulatory role in MI and could be a potential biomarker or drug target in MI.


Assuntos
Arritmias Cardíacas/sangue , Infarto do Miocárdio/sangue , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Idoso , Animais , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/cirurgia , Feminino , Hemoglobinas Glicadas/genética , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Infarto do Miocárdio sem Supradesnível do Segmento ST/sangue , Infarto do Miocárdio sem Supradesnível do Segmento ST/genética , Infarto do Miocárdio sem Supradesnível do Segmento ST/fisiopatologia , Infarto do Miocárdio sem Supradesnível do Segmento ST/cirurgia , Intervenção Coronária Percutânea/efeitos adversos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Suínos , Resultado do Tratamento , Troponina/sangue
3.
J Mol Neurosci ; 68(3): 368-376, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29353438

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide having neurotrophic, neuroprotective, and general cytoprotective actions in a variety of tissues based on its anti-apoptotic, anti-inflammatory, and antioxidant effects. Several studies have demonstrated its cardioprotective effects in vitro and in various animal models. However, few data are available on the presence of PACAP in human cardiac tissues and its role in the pathomechanism and progression of different cardiac disorders, particularly heart failure. Earlier, our research group has shown PAC1 receptor immunoreactivity in human heart tissue samples and we have found significantly elevated PACAP27- and PACAP38-like immunoreactivity in ischemic cardiac samples compared to valvular abnormalities with radioimmunoassay. In the last few years, numerous studies examined the presence and the changes of PACAP levels in different human tissue samples and biological fluids to show alterations in different physiological and pathological conditions. Therefore, the aim of the present study was to measure the alterations of blood PACAP levels in chronic heart failure caused by primary dilated cardiomyopathy or ischemic cardiomyopathy and to examine the possible relationship between serum levels of PACAP, N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and systolic left ventricular function, the most reliable biomarkers of heart failure. In the group of mild heart failure patients, a significant strong negative correlation was detected. Furthermore, in moderate heart failure, we found a significant moderate negative correlation between PACAP and NT-proBNP levels only in ischemic subgroup. Positive correlation was found between serum PACAP level and ejection fraction only in patients with heart failure due to ischemic cardiomyopathy but not in patients with primary dilated cardiomyopathy. In summary, remarkable differences were observed between the ischemic and non-ischemic heart failure suggesting that PACAP might play an important role in the pathomechanism and progression of ischemic heart failure and it might be a potential biomarker of cardiac diseases in the future.


Assuntos
Cardiomiopatia Dilatada/sangue , Insuficiência Cardíaca/sangue , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/sangue , Idoso , Biomarcadores/sangue , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/fisiopatologia , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Precursores de Proteínas/sangue , Função Ventricular Esquerda
4.
PLoS One ; 8(6): e65355, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755222

RESUMO

BACKGROUND: Red wine polyphenols can prevent cardiovascular and inflammatory diseases. Resveratrol, the most extensively studied constituent, is unlikely to solely account for these beneficial effects because of its rather low abundance and bioavailability. Malvidin is far the most abundant polyphenol in red wine; however, very limited data are available about its effect on inflammatory processes and kinase signaling pathways. METHODS FINDINGS: The present study was carried out by using RAW 264.7 macrophages stimulated by bacterial lipopolysaccharide in the presence and absence of malvidin. From the cells, activation of nuclear factor-kappaB, mitogen-activated protein kinase, protein kinase B/Akt and poly ADP-ribose polymerase, reactive oxygen species production, mitogen-activated protein kinase phosphatase-1 expression and mitochondrial depolarization were determined. We found that malvidin attenuated lipopolysaccharide-induced nuclear factor-kappaB, poly ADP-ribose polymerase and mitogen-activated protein kinase activation, reactive oxygen species production and mitochondrial depolarization, while upregulated the compensatory processes; mitogen-activated protein kinase phosphatase-1 expression and Akt activation. CONCLUSIONS: These effects of malvidin may explain the previous findings and at least partially account for the positive effects of moderate red wine consumption on inflammation-mediated chronic maladies such as obesity, diabetes, hypertension and cardiovascular disease.


Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Macrófagos/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo , Vinho
5.
Mol Cell Biochem ; 365(1-2): 129-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22350755

RESUMO

In this study, we investigate the cardiotoxic effects of the well-known cytostatic agent imatinib mesylate (Gleevec), and presented evidence for the cardioprotective effect of BGP-15 which is a novel insulin sensitizer. The cardiotoxic effect of imatinib mesylate was assessed in Langendorff rat heart perfusion system. The cardiac high-energy phosphate levels (creatine phosphate (PCr) and ATP) were monitored in situ by (31)P NMR spectroscopy. The protein oxidation, lipid peroxidation, and the activation of signaling pathways were determined from the freeze-clamped hearts. Prolonged treatment of the heart with imatinib mesylate (20 mg/kg) resulted in cardiotoxicity, which were characterized by the depletion of high-energy phosphates (PCr and ATP), and significantly increased protein oxidation and lipid peroxidation. Imatinib mesylate treatment-induced activation of MAP kinases (including ERK1/2, p38, and JNK) and the phosphorylation of Akt and GSK-3beta. BGP-15 (200 µM) prevented the imatinib mesylate-induced oxidative damages, attenuated the depletion of high-energy phosphates, altered the signaling effect of imatinib mesylate by preventing p38 MAP kinase and JNK activation, and induced the phosphorylation of Akt and GSK-3beta. The suppressive effect of BGP-15 on p38 and JNK activation could be significant because these kinases contribute to the cell death and inflammation in the isolated perfused heart.


Assuntos
Antineoplásicos/toxicidade , Cardiotônicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oximas/farmacologia , Piperazinas/toxicidade , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Pirimidinas/toxicidade , Trifosfato de Adenosina , Animais , Benzamidas , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Coração/efeitos dos fármacos , Mesilato de Imatinib , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/enzimologia , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfocreatina/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA