Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 185(21): 3857-3876, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36240739

RESUMO

The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.


Assuntos
COVID-19 , Janus Quinases , Animais , Citocinas/metabolismo , Humanos , Interferons/metabolismo , Janus Quinases/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
2.
Blood Adv ; 5(23): 4949-4962, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34492681

RESUMO

RUNX1 is essential for the generation of hematopoietic stem cells (HSCs). Runx1-null mouse embryos lack definitive hematopoiesis and die in mid-gestation. However, although zebrafish embryos with a runx1 W84X mutation have defects in early definitive hematopoiesis, some runx1W84X/W84X embryos can develop to fertile adults with blood cells of multilineages, raising the possibility that HSCs can emerge without RUNX1. Here, using 3 new zebrafish runx1-/- lines, we uncovered the compensatory mechanism for runx1-independent hematopoiesis. We show that, in the absence of a functional runx1, a cd41-green fluorescent protein (GFP)+ population of hematopoietic precursors still emerge from the hemogenic endothelium and can colonize the hematopoietic tissues of the mutant embryos. Single-cell RNA sequencing of the cd41-GFP+ cells identified a set of runx1-/--specific signature genes during hematopoiesis. Significantly, gata2b, which normally acts upstream of runx1 for the generation of HSCs, was increased in the cd41-GFP+ cells in runx1-/- embryos. Interestingly, genetic inactivation of both gata2b and its paralog gata2a did not affect hematopoiesis. However, knocking out runx1 and any 3 of the 4 alleles of gata2a and gata2b abolished definitive hematopoiesis. Gata2 expression was also upregulated in hematopoietic cells in Runx1-/- mice, suggesting the compensatory mechanism is conserved. Our findings indicate that RUNX1 and GATA2 serve redundant roles for HSC production, acting as each other's safeguard.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA2/metabolismo , Hemangioblastos , Proteínas de Peixe-Zebra/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA2/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Camundongos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Genes Dev ; 35(7-8): 427-432, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861718

RESUMO

How transcriptional enhancers function to activate distant genes has been the subject of lively investigation for decades. "Enhancers, gene regulation, and genome organization" was the subject of a virtual meeting held November 16-17, 2020, under sponsorship of the National Cancer Institute (NCI), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH). The goal of the meeting was to advance an understanding of how transcriptional enhancers function within the framework of the folded genome as we understand it, emphasizing how levels of organization may influence each other and may contribute to the spatiotemporal specification of transcription. Here we focus on broad questions about enhancer function that remain unsettled and that we anticipate will be central to work in this field going forward. Perforce, we cover contributions of only some speakers and apologize to other contributors in vital areas that we could not include because of space constraints.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Genoma/genética , Humanos , National Institutes of Health (U.S.) , Estados Unidos
4.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33010223

RESUMO

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Assuntos
Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/imunologia , Células Matadoras Naturais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/imunologia
5.
Nat Cell Biol ; 22(11): 1307-1318, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106654

RESUMO

Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.


Assuntos
Antígenos CD34/metabolismo , Proliferação de Células , Autorrenovação Celular , Senescência Celular , Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Fatores Etários , Animais , Cardiotoxinas/toxicidade , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/transplante , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/genética , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/transplante , Transdução de Sinais , Nicho de Células-Tronco
6.
Nat Struct Mol Biol ; 27(6): 521-528, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32514177

RESUMO

Noncoding RNAs (ncRNAs) direct a remarkable number of diverse functions in development and disease through their regulation of transcription, RNA processing and translation. Leading the charge in the RNA revolution is a class of ncRNAs that are synthesized at active enhancers, called enhancer RNAs (eRNAs). Here, we review recent insights into the biogenesis of eRNAs and the mechanisms underlying their multifaceted functions and consider how these findings could inform future investigations into enhancer transcription and eRNA function.


Assuntos
Elementos Facilitadores Genéticos , Epigenoma , RNA não Traduzido/genética , Animais , Cromatina/genética , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , RNA não Traduzido/química , Transcrição Gênica
7.
Nat Commun ; 10(1): 2157, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089138

RESUMO

T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , MicroRNAs/metabolismo , Neoplasias Cutâneas/imunologia , Fatores de Transcrição/metabolismo , Transferência Adotiva/métodos , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Senescência Celular/genética , Senescência Celular/imunologia , Epigênese Genética/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma Experimental/genética , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Complexo Repressor Polycomb 2/imunologia , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
8.
Nat Commun ; 8(1): 1707, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167426

RESUMO

Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia.


Assuntos
Caquexia/prevenção & controle , Neoplasias Experimentais/terapia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Azepinas/farmacologia , Caquexia/genética , Caquexia/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Epigênese Genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
9.
EBioMedicine ; 18: 128-138, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28396013

RESUMO

The specific Sirt1 activator SRT1720 increases mitochondrial function in skeletal muscle, presumably by activating Sirt1. However, Sirt1 gain of function does not increase mitochondrial function, which raises a question about the central role of Sirt1 in SRT1720 action. Moreover, it is believed that the metabolic effects of SRT1720 occur independently of AMP-activated protein kinase (AMPK), an important metabolic regulator that increases mitochondrial function. Here, we show that SRT1720 activates AMPK in a Sirt1-independent manner and SRT1720 activates AMPK by inhibiting a cAMP degrading phosphodiesterase (PDE) in a competitive manner. Inhibiting the cAMP effector protein Epac prevents SRT1720 from activating AMPK or Sirt1 in myotubes. Moreover, SRT1720 does not increase mitochondrial function or improve glucose tolerance in AMPKα2 knockout mice. Interestingly, weight loss induced by SRT1720 is not sufficient to improve glucose tolerance. Therefore, contrary to current belief, the metabolic effects produced by SRT1720 require AMPK, which can be activated independently of Sirt1.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Mitocôndrias/efeitos dos fármacos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Intolerância à Glucose , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/química , Sirtuína 1/genética
10.
Cell Rep ; 17(2): 514-526, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705798

RESUMO

MyoD is a key regulator of skeletal myogenesis that directs contractile protein synthesis, but whether this transcription factor also regulates skeletal muscle metabolism has not been explored. In a genome-wide ChIP-seq analysis of skeletal muscle cells, we unexpectedly observed that MyoD directly binds to numerous metabolic genes, including those associated with mitochondrial biogenesis, fatty acid oxidation, and the electron transport chain. Results in cultured cells and adult skeletal muscle confirmed that MyoD regulates oxidative metabolism through multiple transcriptional targets, including PGC-1ß, a master regulator of mitochondrial biogenesis. We find that PGC-1ß expression is cooperatively regulated by MyoD and the alternative NF-κB signaling pathway. Bioinformatics evidence suggests that this cooperativity between MyoD and NF-κB extends to other metabolic genes as well. Together, these data identify MyoD as a regulator of the metabolic capacity of mature skeletal muscle to ensure that sufficient energy is available to support muscle contraction.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Animais , Camundongos , Mitocôndrias/genética , Contração Muscular/genética , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ligação Proteica , Transdução de Sinais , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo
11.
Development ; 143(11): 1971-80, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27068104

RESUMO

Although the genetic interactions between signaling pathways and transcription factors have been largely decoded, much remains to be learned about the epigenetic regulation of cerebellar development. Here, we report that cerebellar deletion of Ezh2, the methyltransferase subunit of the PRC2 complex, results in reduced H3K27me3 and profound transcriptional dysregulation, including that of a set of transcription factors directly involved in cerebellar neuronal cell-type specification and differentiation. Such transcriptional changes lead to increased GABAergic interneurons and decreased Purkinje cells. Transcriptional changes also inhibit the proliferation of granule precursor cells derived from the rhombic lip. The loss of both cell types ultimately results in cerebellar hypoplasia. These findings indicate Ezh2/PRC2 plays crucial roles in regulating neurogenesis from both cerebellar germinal zones.


Assuntos
Linhagem da Célula , Cerebelo/embriologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Animais , Contagem de Células , Linhagem da Célula/genética , Proliferação de Células , Cerebelo/metabolismo , Cerebelo/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Genoma , Histonas/metabolismo , Interneurônios/metabolismo , Lisina/metabolismo , Metilação , Camundongos Knockout , Fator de Transcrição PAX7/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
12.
Cell Rep ; 14(5): 1156-1168, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26832413

RESUMO

Histone variants complement and integrate histone post-translational modifications in regulating transcription. The histone variant macroH2A1 (mH2A1) is almost three times the size of its canonical H2A counterpart, due to the presence of an ∼25 kDa evolutionarily conserved non-histone macro domain. Strikingly, mH2A1 can mediate both gene repression and activation. However, the molecular determinants conferring these alternative functions remain elusive. Here, we report that mH2A1.2 is required for the activation of the myogenic gene regulatory network and muscle cell differentiation. H3K27 acetylation at prospective enhancers is exquisitely sensitive to mH2A1.2, indicating a role of mH2A1.2 in imparting enhancer activation. Both H3K27 acetylation and recruitment of the transcription factor Pbx1 at prospective enhancers are regulated by mH2A1.2. Overall, our findings indicate a role of mH2A1.2 in marking regulatory regions for activation.


Assuntos
Elementos Facilitadores Genéticos/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Genoma , Células HEK293 , Humanos , Camundongos , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Ligação Proteica/genética , Transcrição Gênica , Transcriptoma/genética
13.
Cell Stem Cell ; 17(6): 651-662, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637942

RESUMO

For many years, stem cell metabolism was viewed as a byproduct of cell fate status rather than an active regulatory mechanism; however, there is now a growing appreciation that metabolic pathways influence epigenetic changes associated with lineage commitment, specification, and self-renewal. Here we review how metabolites generated during glycolytic and oxidative processes are utilized in enzymatic reactions leading to epigenetic modifications and transcriptional regulation. We discuss how "metabolic reprogramming" contributes to global epigenetic changes in the context of naive and primed pluripotent states, somatic reprogramming, and hematopoietic and skeletal muscle tissue stem cells, and we discuss the implications for regenerative medicine.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Células-Tronco/citologia , Animais , Carbono/química , Diferenciação Celular , Linhagem da Célula , Reprogramação Celular , Ciclo do Ácido Cítrico , Células-Tronco Embrionárias/citologia , Glicólise , Histonas/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fosforilação Oxidativa , Oxigênio/química , Células-Tronco Pluripotentes/citologia , Proteínas/química , Transcrição Gênica
15.
Genes Dev ; 27(11): 1299-312, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752591

RESUMO

Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein-protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause-release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Miostatina/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Animais , Linhagem Celular , Quinase 9 Dependente de Ciclina/metabolismo , Dexametasona/farmacologia , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/induzido quimicamente , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica
16.
Cell Mol Life Sci ; 70(11): 2015-29, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23283301

RESUMO

Reduction of nutrient intake without malnutrition positively influences lifespan and healthspan from yeast to mice and exerts some beneficial effects also in humans. The AMPK-FoxO axis is one of the evolutionarily conserved nutrient-sensing pathways, and the FOXO3A locus is associated with human longevity. Interestingly, FoxO3A has been reported to be also a mitochondrial protein in mammalian cells and tissues. Here we report that glucose restriction triggers FoxO3A accumulation into mitochondria of fibroblasts and skeletal myotubes in an AMPK-dependent manner. A low-glucose regimen induces the formation of a protein complex containing FoxO3A, SIRT3, and mitochondrial RNA polymerase (mtRNAPol) at mitochondrial DNA-regulatory regions causing activation of the mitochondrial genome and a subsequent increase in mitochondrial respiration. Consistently, mitochondrial transcription increases in skeletal muscle of fasted mice, with a mitochondrial DNA-bound FoxO3A/SIRT3/mtRNAPol complex detectable also in vivo. Our results unveil a mitochondrial arm of the AMPK-FoxO3A axis acting as a recovery mechanism to sustain energy metabolism upon nutrient restriction.


Assuntos
Adenilato Quinase/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Glucose/metabolismo , Mitocôndrias/metabolismo , Sirtuína 3/fisiologia , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Células Cultivadas , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Metabolismo Energético , Privação de Alimentos , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Genoma Mitocondrial , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células NIH 3T3 , Sirtuína 3/genética , Sirtuína 3/metabolismo
17.
Carcinogenesis ; 32(11): 1607-14, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21828058

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs, which regulate gene expression by inhibiting translation or promoting degradation of specific target messenger RNAs (mRNAs). Alteration of the levels of a number of miRNAs is common in solid and hematological tumors. We have shown previously that miR-214 regulates Ezh2 in skeletal muscle and embryonic stem cells. The current study was aimed at examining the role of miR-214 in breast cancer where miR-214 levels are reduced but whether this phenomenon bears a functional relevance is unknown. MiR-214 expression was inversely correlated with Ezh2 mRNA and protein levels in breast cancer cell lines and at least one copy of the miR-214 alleles was found to be deleted in 24% (6/25) of primary breast tumors. Experimental increase of miR-214 in breast cancer cell lines correlated with reduction of Ezh2 protein levels, a known marker of invasion and aggressive breast cancer behavior. Supporting a direct targeting mechanism, miR-214 decreased luciferase activity from a construct containing the Ezh2 3' untranslated region. Expression of miR-214 specifically reduced cell proliferation of breast cancer cells and inhibited the invasive potential of a highly metastatic breast cancer cell line. These findings indicate that reduced miR-214 levels may contribute to breast tumorigenesis by allowing abnormally elevated Ezh2 accumulation and subsequent unchecked cell proliferation and invasion.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Western Blotting , Neoplasias da Mama/enzimologia , Adesão Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Invasividade Neoplásica , Complexo Repressor Polycomb 2 , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Células Tumorais Cultivadas
18.
Sci Signal ; 3(152): pe49, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21156935

RESUMO

In the field of molecular oncology, the Myc basic helix-loop-helix family of transcription factors has been extensively studied. The Myc proto-oncogene c-Myc binds DNA, activates or represses gene transcription, and consequently affects cellular proliferation. However, emerging evidence presents the existence of c-Myc variants that lack transcriptional activity. A cytoplasmic variant of c-Myc called "Myc-nick," which arises from calpain-mediated cleavage of c-Myc, assists in stable microtubule assembly. Furthermore, Myc-nick promotes MyoD-mediated myogenic differentiation, thus antagonizing its precursor. These results provide exciting new opportunities in formulating molecular approaches for treatment of cancer and in our understanding of cell differentiation.


Assuntos
Calpaína/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Humanos , Hidrólise , Microtúbulos , Desenvolvimento Muscular , Neoplasias , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética
19.
Cell Stem Cell ; 7(4): 455-69, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20887952

RESUMO

How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.


Assuntos
Fator de Transcrição PAX7/metabolismo , Músculo Quadríceps/fisiologia , Regeneração , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Epigênese Genética , Imunofluorescência , Técnicas de Silenciamento de Genes , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX7/genética , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Músculo Quadríceps/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo
20.
Dis Model Mech ; 3(5-6): 298-303, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20354108

RESUMO

Sirtuin 1 (SirT1) is the largest of the seven members of the sirtuin family of class III nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylases, whose activation is beneficial for metabolic, neurodegenerative, inflammatory and neoplastic diseases, and augments life span in model organisms (Finkel et al., 2009; Lavu et al., 2008). In vitro studies show that SirT1 protects genome integrity and is involved in circadian physiological rhythms (Asher et al., 2008; Nakahata et al., 2008; Oberdoerffer et al., 2008). In the last few years, a fundamental role for SirT1 in the metabolism and differentiation of skeletal muscle cells has been uncovered (Fulco et al., 2003), and the use of specific transgenic or knockout SirT1 mouse models implicates it in the protection of heart muscle from oxidative and hypertrophic stresses (Alcendor et al., 2007). In this Perspective, we review the recent exciting findings that have established a key role for the 'longevity' protein SirT1 in skeletal and heart muscle physiology and disease. Furthermore, given the multiple biological functions of SirT1, we discuss the unique opportunities that SirT1 mouse models can offer to improve our integrated understanding of the metabolism, as well as the regeneration and aging-associated changes in the circadian function, of skeletal and heart muscle.


Assuntos
Modelos Animais de Doenças , Doença , Músculos/fisiopatologia , Sirtuína 1/metabolismo , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA