Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Life Sci ; 335: 122278, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37981227

RESUMO

AIMS: Differentiation-inducing factor-1 (DIF-1), a compound in Dictyostelium discoideum, exhibits anti-cancer effects by inhibiting cell proliferation and motility of various mammalian cancer cells in vitro and in vivo. In addition, DIF-1 suppresses lung colony formation in a mouse model, thus impeding cancer metastasis. However, the precise mechanism underlying its anti-metastatic effect remains unclear. In the present study, we aim to elucidate this mechanism by investigating the adhesion of circulating tumor cells to blood vessels using in vitro and in vivo systems. MAIN METHODS: Melanoma cells (1.0 × 105 cells) were injected into the tail vein of 8-week-old male C57BL/6 mice after administration of DIF-1 (300 mg/kg per day) and/or lipopolysaccharide (LPS: 2.5 mg/kg per day). To investigate cell adhesion and molecular mechanisms, cell adhesion assay, western blotting, immunofluorescence staining, and flow cytometry were performed. KEY FINDINGS: Intragastric administration of DIF-1 suppressed lung colony formation. DIF-1 also substantially inhibited the adhesion of cancer cells to human umbilical vein endothelial cells. Notably, DIF-1 did not affect the expression level of adhesion-related proteins in cancer cells, but it did decrease the expression of vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells by suppressing its mRNA-to-protein translation through inhibition of mTORC1-p70 S6 kinase signaling. SIGNIFICANCE: DIF-1 reduced tumor cell adhesion to blood vessels by inhibiting mTORC1-S6K signaling and decreasing the expression of adhesion molecule VCAM-1 on vascular endothelial cells. These findings highlight the potential of DIF-1 as a promising compound for the development of anti-cancer drugs with anti-metastatic properties.


Assuntos
Dictyostelium , Molécula 1 de Adesão de Célula Vascular , Camundongos , Animais , Masculino , Humanos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Lipopolissacarídeos/farmacologia , Dictyostelium/metabolismo , Camundongos Endogâmicos C57BL , Proteínas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Diferenciação Celular , Adesão Celular , Mamíferos/metabolismo
2.
Int Immunopharmacol ; 117: 109913, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36812674

RESUMO

The tumor microenvironment (TME), largely composed of tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), plays a key role in cancer progression. A small molecule, differentiation-inducing factor-1 (DIF-1) secreted by Dictyostelium discoideum, is known to exhibit anticancer activity; however, its effect on the TME remains unknown. In this study, we investigated the effect of DIF-1 on the TME using mouse triple-negative breast cancer 4T1-GFP cells, mouse macrophage RAW 264.7 cells, and mouse primary dermal fibroblasts (DFBs). Polarization of 4T1 cell-conditioned medium-induced macrophage into TAMs was not affected by DIF-1. In contrast, DIF-1 decreased 4T1 cell co-culturing-induced C-X-C motif chemokine ligand 1 (CXCL1), CXCL5, and CXCL7 expression in DFBs and suppressed DFB differentiation into CAF-like cells. Additionally, DIF-1 inhibited C-X-C motif chemokine receptor 2 (CXCR2) expression in 4T1 cells. Immunohistochemical analyses of tumor tissue samples excised from breast cancer-bearing mice showed that DIF-1 did not affect the number of CD206-positive TAMs; however, it decreased the number of α-smooth muscle actin-positive CAFs and CXCR2 expression. These results indicated that the anticancer effect of DIF-1 was partially attributed to the inhibition of CXCLs/CXCR2 axis-mediated communication between breast cancer cells and CAFs.


Assuntos
Fibroblastos Associados a Câncer , Dictyostelium , Neoplasias , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Neoplasias/metabolismo , Macrófagos/metabolismo , Fibroblastos , Comunicação , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Hypertens Res ; 45(12): 1869-1881, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36171325

RESUMO

Renin-angiotensin system inhibitors have been shown to prevent cancer metastasis in experimental models, but there are limited data in clinical studies. We aimed to explore whether renin-angiotensin system inhibitors administered during the period of cancer resection can influence the subsequent development of metastasis by analyzing multiple individual types of primary cancers. A total of 4927 patients who had undergone resection of primary cancers at Kyushu University Hospital from 2009 to 2014 were enrolled and categorized into 3 groups based on the use of antihypertensive drugs: renin-angiotensin system inhibitors, other drugs, and none. Cumulative incidence functions of metastasis, treating death as a competing risk, were calculated, and the difference was examined among groups by Gray's test. Fine and Gray's model was employed to evaluate multivariate-adjusted hazards of incidental metastasis. In the multivariate-adjusted analysis, patients with skin and renal cancers showed statistically higher risks of metastasis with the use of renin-angiotensin system inhibitors (hazard ratio [95% confidence interval], 5.81 [1.07-31.57] and 4.24 [1.71-10.53], respectively). Regarding pancreatic cancer, patients treated with antihypertensive drugs other than renin-angiotensin system inhibitors had a significantly increased risk of metastasis (hazard ratio [95% confidence interval], 3.31 [1.43-7.69]). Future larger studies are needed to ascertain whether renin-angiotensin system inhibitors can increase the risk of metastasis in skin and renal cancers, focusing on specific tissue types and potential factors associated with renin-angiotensin system inhibitor use.


Assuntos
Neoplasias Renais , Neoplasias Pancreáticas , Humanos , Anti-Hipertensivos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Sistema Renina-Angiotensina , Estudos Retrospectivos , Registros Eletrônicos de Saúde , Inibidores Enzimáticos/farmacologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico
4.
Eur J Pharmacol ; 909: 174415, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375673

RESUMO

Angiotensin II (Ang II) reportedly facilitates primary tumor growth and distal hematogenous metastasis formation in various murine intravenous metastasis models. However, it is unclear whether Ang II accelerates the initial processes of metastasis formation that begins in primary tumors surrounded by tumor microenvironment. We examined the effects of Ang II on primary tumors and lung metastasis lesions using a murine spontaneous metastasis model, in which triple negative breast cancer 4T1 cells constitutively expressing luciferase (4T1-Luc cells) were injected into the mammary fat pad of BALB/c mice. Subcutaneous injection of Ang II significantly accelerated primary tumor growth and lung metastasis formation. Ang II increased the protein expression levels of c-Myc, cyclin D1, fibronectin, vimentin, αSMA and Snail, and the treatment with the Ang II type 1 receptor blocker valsartan significantly suppressed the Ang II-induced increases of fibronectin and vimentin. Valsartan also significantly reduced lung metastatic lesions. However, Ang II did not have significant effects on 4T1-Luc cells including the proliferation, migration, invasion, or the expressions of proteins related to cell proliferation and epithelial-to-mesenchymal transition. In contrast, when 4T1-Luc cells were co-cultured with dermal fibroblasts, Ang II significantly accelerated cell migration and increased the expressions of fibronectin, vimentin, αSMA and Snail in 4T1-Luc cells. And moreover, Ang II significantly increased the mRNA expression of IL-6 in fibroblasts co-cultured with 4T1-Luc cells. These results suggested that Ang II accelerates surrounding fibroblasts by soluble factors such as IL-6 to promote epithelial-to-mesenchymal transition, which result in the initiation of cancer metastasis.


Assuntos
Angiotensina II/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pulmonares/secundário , Neoplasias de Mama Triplo Negativas/patologia , Animais , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Feminino , Humanos , Pulmão/patologia , Glândulas Mamárias Animais/patologia , Camundongos , Microambiente Tumoral
5.
Oncogene ; 40(37): 5579-5589, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304250

RESUMO

We have previously reported that the differentiation-inducing factor-1 (DIF-1), a compound identified in Dictyostelium discoideum, suppresses the growth of MCF-7 breast cancer cells by inactivating p70 ribosomal protein S6 kinase (p70S6K). Therefore, we first examined whether the same mechanism operates in other breast cancer cells, especially triple-negative breast cancer (TNBC), the most aggressive and refractory phenotype of breast cancer. We also investigated the mechanism by which DIF-1 suppresses p70S6K by focusing on the AMPK-mTORC1 system. We found that DIF-1 induces phosphorylation of AMPK and Raptor and dephosphorylation of p70S6K in multiple TNBC cell lines. Next, we examined whether AMPK-mediated inhibition of p70S6K leads to the suppression of proliferation and migration/infiltration of TNBC cells. DIF-1 significantly reduced the expression levels of cyclin D1 by suppressing the translation of STAT3 and strongly suppressed the expression levels of Snail, which led to the suppression of growth and motility, respectively. Finally, we investigated whether DIF-1 exerts anticancer effects on TNBC in vivo. Intragastric administration of DIF-1 suppressed tumor growth and spontaneous lung metastasis of 4T1-Luc cells injected into the mammary fat pad of BALB/c mice. DIF-1 is expected to lead to the development of anticancer drugs, including anti-TNBC, by a novel mechanism.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias de Mama Triplo Negativas , Proteínas Quinases Ativadas por AMP , Animais , Humanos , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais
6.
Low Urin Tract Symptoms ; 13(2): 299-307, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33089671

RESUMO

OBJECTIVE: To develop a new mouse model of underactive bladder (UAB) caused by chronic bladder outlet obstruction (BOO). METHODS: BOO was created in 6-week-old male C57BL/6 mice using surgery to loosely place a silver jump ring around the bladder neck of each mouse. Micturition behavior (assessed with a metabolic cage) and cystometry were used to evaluate bladder function at 8 and 16 weeks after BOO. Following completion of the functional studies, the bladders of the mice were excised, weighed, and subjected to histological analysis. RESULTS: Micturition behavior analysis showed that mice subjected to BOO for 16 weeks had a lower frequency of micturition (7.3 ± 1.1 vs 12.5 ± 3.0 times/d, P < .05) and volume per void (106.0 ± 0.1 vs 133.9 ± 3.2 µL, P < .05) than mice subjected to BOO for 8 weeks. Cystometry revealed that mice subjected to BOO for 16 weeks had lower baseline pressure (8.4 ± 0.6 vs 14.0 ± 0.7 cmH2 O, P < .01) and micturition pressure (13.9 ± 1.1 vs 42.8 ± 1.7 cmH2 O, P < .05) than mice subjected to BOO for 8 weeks. BOO caused progressive increases in bladder mass and collagen deposition over time. CONCLUSIONS: We successfully established a novel mouse model of UAB using surgery to place a silver jump ring loosely on the bladder neck. BOO initially induced bladder overactivity but subsequently resulted in UAB due to deterioration of detrusor smooth muscle contractility and progressive deposition of collagen in the bladder wall.


Assuntos
Obstrução do Colo da Bexiga Urinária , Bexiga Inativa , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obstrução do Colo da Bexiga Urinária/etiologia , Micção
7.
Cancer Sci ; 110(12): 3761-3772, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31553107

RESUMO

Differentiation-inducing factor-1 (DIF-1) has been reported to inhibit the proliferation of various mammalian cells by unknown means, although some possible mechanisms of its action have been proposed, including the activation of glycogen synthase kinase-3 (GSK-3). Here, we report an alternative mechanism underlying the action of DIF-1 in human breast cancer cell line MCF-7, on which the effects of DIF-1 have not been examined previously. Intragastric administration of DIF-1 reduced the tumor growth from MCF-7 cells injected into a mammary fat pad of nude mice, without causing adverse effects. In cultured MCF-7, DIF-1 arrested the cell cycle in G0 /G1 phase and suppressed cyclin D1 expression, consistent with our previous results obtained in other cell species. However, DIF-1 did not inhibit the phosphorylation of GSK-3. Investigating an alternative mechanism for the reduction of cyclin D1, we found that DIF-1 reduced the protein levels of signal transducer and activator of transcription 3 (STAT3). The STAT3 inhibitor S3I-201 suppressed cyclin D1 expression and cell proliferation and the overexpression of STAT3 enhanced cyclin D1 expression and accelerated proliferation. Differentiation-inducing factor-1 did not reduce STAT3 mRNA or reduce STAT3 protein in the presence of cycloheximide, suggesting that DIF-1 inhibited STAT3 protein synthesis. Seeking its mechanism, we revealed that DIF-1 inhibited the activation of 70 kDa and/or 85 kDa ribosomal protein S6 kinase (p70S6K /p85S6K ). Inhibition of p70S6K /p85S6K by rapamycin also reduced the expressions of STAT3 and cyclin D1. Therefore, DIF-1 suppresses MCF-7 proliferation by inhibiting p70S6K /p85S6K activity and STAT3 protein synthesis followed by reduction of cyclin D1 expression.


Assuntos
Ciclina D1/antagonistas & inibidores , Hexanonas/farmacologia , Hidrocarbonetos Clorados/farmacologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Ciclina D1/análise , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Quinases S6 Ribossômicas 70-kDa , Fator de Transcrição STAT3/biossíntese
8.
Biochem Pharmacol ; 168: 82-90, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229551

RESUMO

We previously reported that 2,5-dimethylcelecoxib (DM-celecoxib), a celecoxib derivative that is unable to inhibit cyclooxygenase-2, prevented cardiac remodeling by activating glycogen synthase kinase-3 (GSK-3) and prolonged the lifespan of heart failure mice with genetic dilated cardiomyopathy or transverse aortic constriction-induced left ventricular hypertrophy. However, it remained unclear how DM-celecoxib regulated structure and function of cardiomyocytes and cardiac fibroblasts involved in cardiac remodeling. In the present study, therefore, we investigated the effect of DM-celecoxib on isoprenaline-induced cardiomyocyte hypertrophy and cardiac fibroblast activation, because DM-celecoxib prevented isoprenaline-induced cardiac remodeling in vivo. DM-celecoxib suppressed isoprenaline-induced neonatal rat cardiomyocyte hypertrophy by the inhibition of Akt phosphorylation resulting in the activation of GSK-3 and the inhibition of ß-catenin and mammalian target of rapamycin (mTOR). DM-celecoxib also suppressed the proliferation and the production of matrix metalloproteinase-2 and fibronectin of rat cardiac fibroblasts. Moreover, we found that phosphatase and tensin homolog on chromosome 10 (PTEN) could be a molecule to mediate the effect of DM-celecoxib on Akt. These results suggest that DM-celecoxib directly improves the structure and function of cardiomyocytes and cardiac fibroblasts and that this compound could be clinically useful for the treatment of ß-adrenergic receptor-mediated maladaptive cardiac remodeling.


Assuntos
Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Remodelação Ventricular/efeitos dos fármacos
9.
J Pharmacol Sci ; 139(3): 209-214, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30773300

RESUMO

The aim of this study was to investigate the contribution of gene polymorphisms, in combination with habitual caffeine consumption, to the effect of caffeine intake on hemodynamic and psychoactive parameters. A double-blind, prospective study was conducted with 201 healthy volunteers randomly allocated 2:1 to the caffeinated group (150 mL decaffeinated coffee with additional 200 mg caffeine) or decaffeinated group (150 mL decaffeinated coffee). We measured the changes in blood pressure (BP) and calculation speed upon coffee intake, stratifying with gene polymorphisms, e.g., those in adenosine A2A receptor (ADORA2A) and cytochrome P450 (CYP) 1A2, and daily caffeine consumption (≤90 mg/day and >90 mg/day). Overall, caffeine intake independently increased BP and calculation speed (p-values < 0.05), irrespective of the polymorphisms. In stratified analysis, a statistical significance within the caffeinated group was observed for the change in systolic BP in the stratum of CYP1A2 polymorphism with daily caffeine consumption ≤90 mg/day: change in systolic BP in the CYP1A2 rs762551 CC group (mean ± SD = 11.8 ± 5.9) was higher than that in the AA/CA group (4.1 ± 5.5). Gene polymorphisms may limitedly modify the effect of caffeine intake on hemodynamic parameters in combination with habitual caffeine consumption.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cafeína/farmacologia , Citocromo P-450 CYP1A2/genética , Frequência Cardíaca/efeitos dos fármacos , Café , Método Duplo-Cego , Feminino , Humanos , Masculino , Matemática , Polimorfismo Genético , Estudos Prospectivos , Receptor A2A de Adenosina/genética , Adulto Jovem
10.
Biochem Biophys Res Commun ; 493(1): 9-13, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28939042

RESUMO

Chronic kidney disease (CKD) causes hyperphosphatemia and secondary hyperparathyroidism, leading to several disorders of bone metabolism. Although high concentrations of extracellular inorganic phosphate (Pi) inhibit osteoclastogenesis, the molecular mechanism of this effect has not been fully understood. In the present study, therefore, we examined the effect of Pi on the differentiation of the osteoclast precursor RAW-D cells. Treatment with the receptor activator of nuclear factor-kappa B ligand induced the differentiation of RAW-D cells (osteoclastogenesis). However, Pi significantly weakened this effect, assessed by the tartrate-resistant acid phosphatase (TRAP) activity and the number of TRAP-positive multinucleated cells. Pi also reduced the expressions of nuclear factor of activated T-cell (NFAT) c1 and dendritic cell-specific transmembrane protein (DC-STAMP). Interestingly, the Pi-induced reduction of DC-STAMP gene promoter activity was lost when the activator protein 1 (AP-1) binding site was mutated. Since Pi strongly inhibited the expression of c-Fos which is the component of AP-1, the Pi-induced reduction of DC-STAMP expression was proposed to be mediated by the absence of c-Fos. These results suggested that hyperphosphatemia in the patients with CKD suppresses bone resorption by inhibiting osteoclastogenesis, and this impairs the regulation of bone metabolism.


Assuntos
Fusão Celular , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Fosfatos/administração & dosagem , Ligante RANK/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Osteoclastos/citologia
11.
Biochem Pharmacol ; 138: 31-48, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28501501

RESUMO

Differentiation-inducing factor-1 (DIF-1) isolated from Dictyostelium discoideum strongly inhibits the proliferation of various mammalian cells through the activation of glycogen synthase kinase-3 (GSK-3). To evaluate DIF-1 as a novel anti-cancer agent for malignant melanoma, we examined whether DIF-1 has anti-proliferative, anti-migratory, and anti-invasive effects on melanoma cells using in vitro and in vivo systems. DIF-1 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via GSK-3 in mouse (B16BL6) and human (A2058) malignant melanoma cells, and thereby strongly inhibited their proliferation. DIF-1 suppressed the canonical Wnt signaling pathway by lowering the expression levels of transcription factor 7-like 2 and ß-catenin, key transcription factors in this pathway. DIF-1 also inhibited cell migration and invasion, reducing the expression of matrix metalloproteinase-2; however, this effect was not dependent on GSK-3 activity. In a mouse lung tumor formation model, repeated oral administrations of DIF-1 markedly reduced melanoma colony formation in the lung. These results suggest that DIF-1 inhibits cell proliferation by a GSK-3-dependent mechanism and suppresses cell migration and invasion by a GSK-3-independent mechanism. Therefore, DIF-1 may have a potential as a novel anti-cancer agent for the treatment of malignant melanoma.


Assuntos
Antineoplásicos/uso terapêutico , Quinase 3 da Glicogênio Sintase/metabolismo , Hexanonas/uso terapêutico , Hidrocarbonetos Clorados/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/genética , Hexanonas/efeitos adversos , Hexanonas/farmacologia , Humanos , Hidrocarbonetos Clorados/efeitos adversos , Hidrocarbonetos Clorados/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Melanoma/metabolismo , Melanoma/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Interferência de RNA , Distribuição Aleatória , Carga Tumoral/efeitos dos fármacos
12.
Hypertens Res ; 40(2): 130-139, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27628899

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a crucial regulator of cardiac hypertrophy. We previously reported that 2,5-dimethylcelecoxib (DM-celecoxib), a celecoxib derivative unable to inhibit cyclooxygenase-2, prevented cardiac remodeling by activating GSK-3, resulting in lifespan prolongation in a mouse model of genetic dilated cardiomyopathy. In the present study, we investigated whether DM-celecoxib can also prevent pressure-induced cardiac remodeling and heart failure, elicited by transverse aortic constriction (TAC). Before testing the effects of DM-celecoxib, we compared the effects of TAC on the hearts of wild-type and GSK-3ß hetero-deficient (GSK-3ß+/-) mice to determine the role of GSK-3 in cardiac remodeling and heart failure. GSK-3ß+/- mouse hearts exhibited more severe hypertrophy, which was characterized by accelerated interstitial fibrosis, than wild-type mouse hearts after TAC, suggesting that reduced GSK-3ß activity aggravates pressure-induced left ventricular remodeling. We subsequently examined the effects of DM-celecoxib on TAC-induced cardiac remodeling. DM-celecoxib inhibited left ventricular systolic functional deterioration, and prevented left ventricular hypertrophy and fibrosis. It also activated GSK-3α and ß by inhibiting Akt, suppressing the activity of ß-catenin and nuclear factor of activated T-cells and thereby decreasing the expression of the Wnt/ß-catenin target gene products fibronectin and matrix metalloproteinase-2. These results suggest that DM-celecoxib is clinically useful for treating pressure-induced heart diseases.


Assuntos
Cardiomegalia/metabolismo , Cardiomiopatia Dilatada/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiomegalia/patologia , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/genética , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Cancer Sci ; 108(1): 108-115, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27761963

RESUMO

We previously reported that celecoxib, a selective COX-2 inhibitor, strongly inhibited human colon cancer cell proliferation by suppressing the Wnt/ß-catenin signaling pathway. 2,5-Dimethylcelecoxib (DM-celecoxib), a celecoxib analog that does not inhibit COX-2, has also been reported to have an antitumor effect. In the present study, we elucidated whether DM-celecoxib inhibits intestinal cancer growth, and its underlying mechanism of action. First, we compared the effect of DM-celecoxib with that of celecoxib on the human colon cancer cell lines HCT-116 and DLD-1. 2,5-Dimethylcelecoxib suppressed cell proliferation and inhibited T-cell factor 7-like 2 expression with almost the same strength as celecoxib. 2,5-Dimethylcelecoxib also inhibited the T-cell factor-dependent transcription activity and suppressed the expression of Wnt/ß-catenin target gene products cyclin D1 and survivin. Subsequently, we compared the in vivo effects of celecoxib and DM-celecoxib using the Mutyh-/- mouse model, in which oxidative stress induces multiple intestinal carcinomas. Serum concentrations of orally administered celecoxib and DM-celecoxib elevated to the levels enough to suppress cancer cell proliferation. Repeated treatment with celecoxib and DM-celecoxib markedly reduced the number and size of the carcinomas without showing toxicity. These results suggest that the central mechanism for the anticancer effect of celecoxib derivatives is the suppression of the Wnt/ß-catenin signaling pathway but not the inhibition of COX-2, and that DM-celecoxib might be a better lead compound candidate than celecoxib for the development of novel anticancer drugs.


Assuntos
Celecoxib/farmacologia , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/patologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Contagem de Células Sanguíneas , Peso Corporal/efeitos dos fármacos , Celecoxib/sangue , Celecoxib/uso terapêutico , Linhagem Celular Tumoral , DNA Glicosilases/deficiência , DNA Glicosilases/genética , Feminino , Humanos , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Pirazóis/sangue , Pirazóis/uso terapêutico , Sulfonamidas/sangue , Sulfonamidas/uso terapêutico , Fatores de Transcrição TCF/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
14.
J Pharmacol Sci ; 133(1): 18-24, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28007462

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to impair bone healing. We previously reported that in colon cancer cells, celecoxib, a COX-2-selective NSAID, inhibited the canonical Wnt/ß-catenin signaling pathway. Since this pathway also plays an important role in osteoblast growth and differentiation, we examined the effect of celecoxib on maturation of osteoblast-like cell line MC3T3-E1. Celecoxib induced degradation of transcription factor 7-like 2, a key transcription factor of the canonical Wnt pathway. Subsequently, we analyzed the effect of celecoxib on two osteoblast differentiation markers; runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), both of which are the products of the canonical Wnt pathway target genes. Celecoxib inhibited the expression of both RUNX2 and ALP by suppressing their promoter activity. Consistent with these observations, celecoxib also strongly inhibited osteoblast-mediated mineralization. These results suggest that celecoxib inhibits osteoblast maturation by suppressing Wnt target genes, and this could be the mechanism that NSAIDs inhibit bone formation and fracture healing.


Assuntos
Celecoxib/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Fosfatase Alcalina/biossíntese , Animais , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Camundongos , Osteoblastos/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/biossíntese
15.
Biochem Pharmacol ; 116: 120-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27453433

RESUMO

Inflammatory stimuli induce prostaglandin E2 (PGE2) synthesis by upregulating cycloxgenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1). Glycogen synthase kinase-3 (GSK-3) reportedly plays an important role in inflammatory reactions, whereas the role of this enzyme in inflammatory PGE2 production remains unclear. In the present study, therefore, we examined whether inhibition of GSK-3 can reduce inflammatory PGE2 production in vitro and in vivo. When macrophage-like cells differentiated from THP-1 were stimulated with lipopolysaccharide (LPS), PGE2 production and the expression levels of COX-2 and mPGES-1 were markedly elevated. GSK-3 inhibitors LiCl and SB216763 strongly suppressed their protein levels through inhibition of mRNA expressions. Subsequently, we examined the effect of GSK-3 inhibitors on nuclear factor κB (NF-κB) and early growth response-1 (Egr-1). The GSK-3 inhibitors had no significant effect on the NF-κB pathway, whereas they significantly decreased the expression level of Egr-1. Pharmacological and genetic inhibitions of GSK-3 also strongly suppressed PGE2 production in cultured peritoneal macrophages and in inflammatory air pouches made under the skin of living mice. These results suggested that GSK-3 plays a key role in PGE2 production by increasing COX-2 and mPGES-1 probably through Egr-1-mediated transcription and GSK-3 inhibitors may be potential as novel anti-inflammatory drugs.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Regulação para Baixo , Quinase 3 da Glicogênio Sintase/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Prostaglandina-E Sintases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Ciclo-Oxigenase 2/genética , Dinoprostona/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Humanos , Indóis/farmacologia , Lipopolissacarídeos/farmacologia , Cloreto de Lítio/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Maleimidas/farmacologia , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Prostaglandina-E Sintases/genética , Inibidores de Proteínas Quinases/farmacologia
16.
Am J Physiol Heart Circ Physiol ; 310(11): H1808-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106044

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) plays a central role in both cardiac physiology and pathology. Herein we want to clarify the role of GSK-3ß in familial dilated cardiomyopathy. We generated a mouse model carrying a heterozygous knockout mutation of GSK-3ß (GSK-3ß(+/-) KO), together with a ΔK210 knockin mutation in cardiac troponin T (ΔK210 cTnT KI), which was proved to be one of the genetic causes of familial dilated cardiomyopathy (DCM). GSK-3ß(+/-) KO prevented the slow and rapid deterioration in left ventricular systolic function accompanying heart failure (HF) in DCM mice with heterozygous and homozygous ΔK210 cTnT KI mutations, respectively. GSK-3ß(+/-) KO also prevented cardiac enlargement, myocardial fibrosis, and cardiomyocyte apoptosis and markedly reduced the expression of cardiac ß-myosin heavy chain isoform, indicative of HF, in DCM mice with homozygous ΔK210 cTnT KI mutation. GSK-3ß(+/-) KO also extended the life span of these DCM mice. This study suggests that the inhibition of GSK-3ß is cardioprotective in familial DCM associated with ΔK210 cTnT mutation.


Assuntos
Cardiomiopatia Dilatada/genética , Glicogênio Sintase Quinase 3 beta/genética , Miocárdio/metabolismo , Troponina T/genética , Disfunção Ventricular Esquerda/genética , Animais , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Transgênicos , Cadeias Pesadas de Miosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Troponina T/metabolismo , Disfunção Ventricular Esquerda/metabolismo
17.
J Pharmacol Sci ; 127(4): 446-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25913757

RESUMO

Differentiation-inducing factor-1 (DIF-1) produced by Dictyostelium discoideum strongly inhibits the proliferation of various types of cancer cells by suppression of the Wnt/ß-catenin signal transduction pathway. In the present study, we examined the effect of differentiation-inducing factor-3 (DIF-3), a monochlorinated metabolite of DIF-1 that is also produced by D. discoideum, on human colon cancer cell lines HCT-116 and DLD-1. DIF-3 strongly inhibited cell proliferation by arresting the cell cycle at the G0/G1 phase. DIF-3 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via activation of GSK-3ß in a time and dose-dependent manner. In addition, DIF-3 suppressed the expression of T-cell factor 7-like 2, a key transcription factor in the Wnt/ß-catenin signaling pathway, thereby reducing the mRNA levels of cyclin D1 and c-Myc. Subsequently, we examined the in vivo effects of DIF-3 in Mutyh(-/-) mice with oxidative stress-induced intestinal cancers. Repeated oral administration of DIF-3 markedly reduced the number and size of cancers at a level comparable to that of DIF-1. These data suggest that DIF-3 inhibits intestinal cancer cell proliferation in vitro and in vivo, probably by mechanisms similar to those identified in DIF-1 actions, and that DIF-3 may be a potential novel anti-cancer agent.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Hexanonas/farmacologia , Administração Oral , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HCT116 , Hexanonas/administração & dosagem , Humanos , Camundongos Transgênicos , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/fisiologia
18.
Biochem Pharmacol ; 89(3): 340-8, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24670930

RESUMO

We reported that differentiation-inducing factor-1 (DIF-1), synthesized by Dictyostelium discoideum, inhibited proliferation of various tumor cell lines in vitro by suppressing the Wnt/ß-catenin signaling pathway. However, it remained unexplored whether DIF-1 also inhibits tumor growth in vivo. In the present study, therefore, we examined in-vivo effects of DIF-1 using three cancer models: Mutyh-deficient mice with oxidative stress-induced intestinal tumors and nude mice xenografted with the human colon cancer cell line HCT-116 and cervical cancer cell line HeLa. In exploration for an appropriate route of administration, we found that orally administered DIF-1 was absorbed through the digestive tract to elevate its blood concentration to levels enough to suppress tumor cell proliferation. Repeated oral administration of DIF-1 markedly reduced the number and size of intestinal tumors that developed in Mutyh-deficient mice, reducing the phosphorylation level of GSK-3ß Ser(9) and the expression levels of early growth response-1 (Egr-1), transcription factor 7-like 2 (TCF7L2) and cyclin D1. DIF-1 also inhibited the growth of HCT-116- and HeLa-xenograft tumors together with decreasing phosphorylation level of GSK-3ß Ser(9), although it was not statistically significant in HeLa-xenograft tumors. DIF-1 also suppressed the expressions of Egr-1, TCF7L2 and cyclin D1 in HCT-116-xenograft tumors and those of ß-catenin, TCF7L2 and cyclin D1 in HeLa-xenograft tumors. This is the first report to show that DIF-1 inhibits tumor growth in vivo, consistent with its in-vitro action, suggesting that this compound may have potential as a novel anti-tumor agent.


Assuntos
Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Hexanonas/uso terapêutico , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Ciclina D1/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Knockout , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Estresse Oxidativo , Fosforilação , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
19.
Biochem Biophys Res Commun ; 440(4): 677-82, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24099767

RESUMO

Glycogen synthase kinase (GSK)-3ß plays an important role in osteoblastogenesis by regulating the Wnt/ß-catenin signaling pathway. Therefore, we investigated whether GSK-3ß deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3ß (GSK-3ß(+/-)). The amounts of ß-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3ß(+/-) mice were significantly increased compared with those of wild-type mice, indicating that Wnt/ß-catenin signals were enhanced in GSK-3ß(+/-) mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3ß(+/-) mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3ß deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3ß(+/-) mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3ß, probably through activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Desenvolvimento Ósseo , Regeneração Óssea , Quinase 3 da Glicogênio Sintase/metabolismo , Osteoblastos/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ciclina D1/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Camundongos , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais
20.
J Pharmacol Sci ; 121(2): 103-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23357875

RESUMO

Differentiation-inducing factor-1 (DIF-1), a morphogen for Dictyostelium discoideum, inhibits the proliferation of human cancer cell lines by suppressing the Wnt/ß-catenin signaling pathway. In this study, we examined the effect of DIF-1 on c-Myc, a target gene product of the Wnt/ß-catenin signaling pathway, mainly using HCT-116 colon cancer cells. DIF-1 strongly reduced the amount of c-Myc protein in time- and concentration-dependent manners and reduced c-Myc mRNA expression by inhibiting promoter activity through the TCF binding sites. The effect of DIF-1 on c-Myc was also confirmed using the human cervical cell line HeLa. Pretreatment with the proteasome inhibitor MG132 or glycogen synthase kinase-3ß (GSK-3ß) inhibitors (LiCl and SB216763) attenuated the effect of DIF-1, suggesting that DIF-1 induced c-Myc protein degradation through GSK-3ß activation. Furthermore, we examined whether c-Myc was involved in the anti-proliferative effect of DIF-1 using c-Myc-overexpressing cells and found that c-Myc was associated with the anti-proliferative effect of this compound. These results suggest that DIF-1 inhibits c-Myc expression by inhibiting promoter activity and inducing protein degradation via GSK-3ß activation, resulting in the inhibition of cell proliferation. Since c-Myc seems to be profoundly involved in accelerated proliferation of various malignant tumors, DIF-1 may have a potential to develop into a novel anti-cancer agent.


Assuntos
Hexanonas/farmacologia , Hidrocarbonetos Clorados/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Hexanonas/antagonistas & inibidores , Humanos , Hidrocarbonetos Clorados/antagonistas & inibidores , Indóis/farmacologia , Leupeptinas/farmacologia , Cloreto de Lítio/farmacologia , Maleimidas/farmacologia , Inibidores de Proteassoma/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA