Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 11(1): 2029070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154906

RESUMO

Although chimeric antigen receptor (CAR) T cells have emerged as highly effective treatments for patients with hematologic malignancies, similar efficacy has not been achieved in the context of solid tumors. There are several reasons for this disparity including a) fewer solid tumor target antigens, b) heterogenous target expression amongst tumor cells, c) poor trafficking of CAR T cells to the solid tumor and d) an immunosuppressive tumor microenvironment (TME). Oncolytic viruses have the potential to change this paradigm by a) directly lysing tumor cells and releasing tumor neoantigens, b) stimulating the local host innate immune response to release cytokines and recruit additional innate and adaptive immune cells, c) carrying virus-encoded transgenes to "re-program" the TME to a pro-inflammatory environment and d) promoting an adaptive immune response to the neoantigens in this newly permissive TME. Here we show that the Tumor-Specific Immuno-Gene (T-SIGn) virus NG-347 which encodes IFNα, MIP1α and CD80 synergizes with anti-EGFR CAR T cells as well as anti-HER-2 CAR T cells to clear A549 human tumor xenografts and their pulmonary metastases at doses which are subtherapeutic when each is used as a sole treatment. We show that NG-347 changes the TME to a pro-inflammatory environment resulting in the recruitment and activation of both CAR T cells and mouse innate immune cells. We also show that the transgenes encoded by the virus are critical as synergy is lost in their absence.


Assuntos
Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Animais , Antígenos de Neoplasias/genética , Xenoenxertos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Camundongos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Microambiente Tumoral
2.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762337

RESUMO

In melanoma, the induction of lymphatic growth (lymphangiogenesis) has long been correlated with metastasis and poor prognosis, but we recently showed it can synergistically enhance cancer immunotherapy and boost T cell immunity. Here, we develop a translational approach for exploiting this "lymphangiogenic potentiation" of immunotherapy in a cancer vaccine using lethally irradiated tumor cells overexpressing vascular endothelial growth factor C (VEGF-C) and topical adjuvants. Our "VEGFC vax" induced extensive local lymphangiogenesis and promoted stronger T cell activation in both the intradermal vaccine site and draining lymph nodes, resulting in higher frequencies of antigen-specific T cells present systemically than control vaccines. In mouse melanoma models, VEGFC vax elicited potent tumor-specific T cell immunity and provided effective tumor control and long-term immunological memory. Together, these data introduce the potential of lymphangiogenesis induction as a novel immunotherapeutic strategy to consider in cancer vaccine design.


Assuntos
Vacinas Anticâncer , Melanoma , Animais , Linfangiogênese/fisiologia , Metástase Linfática , Melanoma/patologia , Camundongos , Linfócitos T/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
3.
Adv Drug Deliv Rev ; 114: 43-59, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28694027

RESUMO

Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy.


Assuntos
Imunomodulação , Imunoterapia , Vasos Linfáticos/imunologia , Animais , Autoantígenos/imunologia , Encéfalo/imunologia , Humanos , Inflamação/imunologia , Inflamação/terapia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfangiogênese , Neoplasias/imunologia , Neoplasias/terapia
5.
Cancer Cell ; 30(3): 377-390, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622331

RESUMO

Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.


Assuntos
Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Neoplasias/terapia , Óxido Nítrico Sintase Tipo II/imunologia , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Arginase/biossíntese , Arginase/imunologia , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/biossíntese , Microambiente Tumoral , Fator de Necrose Tumoral alfa/biossíntese
6.
Biomaterials ; 96: 47-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135716

RESUMO

Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.


Assuntos
Desoxicitidina/análogos & derivados , Imunoterapia , Lipídeos/química , Monócitos/patologia , Células Supressoras Mieloides/patologia , Nanocápsulas/química , Neoplasias/terapia , Animais , Morte Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Humanos , Terapia de Imunossupressão , Imunoterapia Adotiva , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Pinocitose/efeitos dos fármacos , Baço/patologia , Linfócitos T/efeitos dos fármacos , Gencitabina
7.
Sci Transl Med ; 6(228): 228ra37, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24648340

RESUMO

The tumor microenvironment is host to a complex network of cytokines that contribute to shaping the intratumoral immune reaction. Chromosomal gains and losses, coupled with expression analysis, of 59 cytokines and receptors and their functional networks were investigated in colorectal cancers. Changes in local expression for 13 cytokines were shown. Metastatic patients exhibited an increased frequency of deletions of cytokines from chromosome 4. Interleukin 15 (IL15) deletion corresponded with decreased IL15 expression, a higher risk of tumor recurrence, and reduced patient survival. Decreased IL15 expression affected the local proliferation of B and T lymphocytes. Patients with proliferating B and T cells at the invasive margin and within the tumor center had significantly prolonged disease-free survival. These results delineate chromosomal instability as a mechanism of modulating local cytokine expression in human tumors and underline the major role of IL15. Our data provide further mechanisms resulting in changes of specific immune cell densities within the tumor, and the importance of local active lymphocyte proliferation for patient survival.


Assuntos
Proliferação de Células , Linfócitos/patologia , Neoplasias/patologia , Citocinas/genética , Humanos , Recidiva Local de Neoplasia , Neoplasias/genética , Taxa de Sobrevida , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA