Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadm8600, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478615

RESUMO

Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.


Assuntos
Neoplasias Pancreáticas , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Deutério , Espectroscopia de Ressonância Magnética/métodos , Glucose/metabolismo , Imageamento por Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem , Ácido Láctico , Imagem Molecular
2.
Sci Rep ; 13(1): 19998, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968574

RESUMO

Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor's biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6'-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3'-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI's suitability to highlight pancreatic cancer in murine models by [3,3'-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI's capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI's SNR by another factor of 4 over ME-SSFP-a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI's sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3'-2H2]-lactate limit of detection < 100 µM; 15.2 T). This leads to the conclusion that pancreatic tumors and acute pancreatitis may be clearly distinguished by DMI, based on their different abilities to generate deuterated lactate.


Assuntos
Neoplasias Pancreáticas , Pancreatite , Camundongos , Humanos , Animais , Deutério , Pancreatite/diagnóstico por imagem , Doença Aguda , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo
3.
NMR Biomed ; 36(11): e4995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37401393

RESUMO

Deuterium metabolic imaging (DMI) is a promising molecular MRI approach, which follows the administration of deuterated substrates and their metabolization. [6,6'-2 H2 ]-glucose for instance is preferentially converted in tumors to [3,3'-2 H2 ]-lactate as a result of the Warburg effect, providing a distinct resonance whose mapping using time-resolved spectroscopic imaging can diagnose cancer. The MR detection of low-concentration metabolites such as lactate, however, is challenging. It has been recently shown that multi-echo balanced steady-state free precession (ME-bSSFP) increases the signal-to-noise ratio (SNR) of these experiments approximately threefold over regular chemical shift imaging; the present study examines how DMI's sensitivity can be increased further by advanced processing methods. Some of these, such as compressed sensing multiplicative denoising and block-matching/3D filtering, can be applied to any spectroscopic/imaging methods. Sensitivity-enhancing approaches were also specifically tailored to ME-bSSFP DMI, by relying on priors related to the resonances' positions and to features of the metabolic kinetics. Two new methods are thus proposed that use these constraints for enhancing the sensitivity of both the spectral images and the metabolic kinetics. The ability of these methods to improve DMI is evidenced in pancreatic cancer studies carried at 15.2 T, where suitable implementations of the proposals imparted eightfold or more SNR improvement over the original ME-bSSFP data, at no informational cost. Comparisons with other propositions in the literature are briefly discussed.

4.
Magn Reson Med ; 86(5): 2604-2617, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34196041

RESUMO

PURPOSE: Deuterium metabolic imaging (DMI) maps the uptake of deuterated precursors and their conversion into lactate and other markers of tumor metabolism. Even after leveraging 2 H's short T1 s, DMI's signal-to-noise ratio (SNR) is limited. We hypothesize that a multi-echo balanced steady-state free precession (ME-bSSFP) approach would increase SNR compared to chemical shift imaging (CSI), while achieving spectral isolation of the metabolic precursors and products. METHODS: Suitably tuned 2 H ME-bSSFP (five echo times [TEs], ΔTE = 2.2 ms, repetition time [TR]/flip-angle = 12 ms/60°) was implemented at 15.2T and compared to CSI (TR/flip-angle = 95 ms/90°) regarding SNR and spectral isolation, in simulations, in deuterated phantoms and for the in vivo diagnosis of a mouse tumor model of pancreatic adenocarcinoma (N = 10). RESULTS: Simulations predicted an SNR increase vs. CSI of 3-5, and that the peaks of 2 H-water, 2 H6,6' -glucose, and 2 H3,3' -lactate can be well isolated by ME-bSSFP; phantoms confirmed this. In vivo, at equal spatial resolution (1.25 × 1.25 mm2 ) and scan time (10 min), 2 H6,6' -glucose's and 2 H3,3' -lactate's SNR were indeed higher for bSSFP than for CSI, three-fold for glucose (57 ± 30 vs. 19 ± 11, P < .001), doubled for water (13 ± 5 vs. 7 ± 3, P = .005). The time courses and overall localization of all metabolites agreed well, comparing CSI against ME-bSSFP. However, a clearer localization of glucose in kidneys and bladder, the detection of glucose-avid rims in certain tumors, and a heterogeneous pattern of intra-tumor lactate production could only be observed using ME-bSSFP's higher resolution. CONCLUSIONS: ME-bSSFP provides greater SNR per unit time than CSI, providing for higher spatial resolution mapping of glucose uptake and lactate production in tumors.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Deutério , Imageamento por Ressonância Magnética , Camundongos , Neoplasias Pancreáticas/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-Ruído
5.
NMR Biomed ; 34(9): e4569, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34137085

RESUMO

Detecting and mapping metabolism in tissues represents a major step in detecting, characterizing, treating and understanding cancers. Recently introduced deuterium metabolic imaging techniques could offer a noninvasive route for the metabolic imaging of animals and humans, based on using 2 H magnetic resonance spectroscopic imaging (MRSI) to detect the uptake of deuterated glucose and the fate of its metabolic products. In this study, 2 H6,6' -glucose was administered to mice cohorts that had been orthotopically implanted with two different models of pancreatic ductal adenocarcinoma (PDAC), involving PAN-02 and KPC cell lines. As the tumors grew, 2 H6,6' -glucose was administered as bolii into the animals' tail veins, and 2 H MRSI images were recorded at 15.2 T. 2D phase-encoded chemical shift imaging experiments could detect a signal from this deuterated glucose immediately after the bolus injection for both the PDAC models, reaching a maximum in the animals' tumors ~ 20 min following administration, and nearly total decay after ~ 40 min. The main metabolic reporter of the cancers was the 2 H3,3' -lactate signal, which MRSI could detect and localize on the tumors when these were 5 mm or more in diameter. Lactate production time traces varied slightly with the animal and tumor model, but in general lactate peaked at times of 60 min or longer following injection, reaching concentrations that were ~ 10-fold lower than those of the initial glucose injection. This 2 H3,3' -lactate signal was only visible inside the tumors. 2 H-water could also be detected as deuterated glucose's metabolic product, increasing throughout the entire time course of the experiment from its ≈10 mM natural abundance background. This water resonance could be imaged throughout the entire abdomen of the animals, including an enhanced presence in the tumor, but also in other organs like the kidney and bladder. These results suggest that deuterium MRSI may serve as a robust, minimally invasive tool for the monitoring of metabolic activity in pancreatic tumors, capable of undergoing clinical translation and supporting decisions concerning treatment strategies. Comparisons with in vivo metabolic MRI experiments that have been carried out in other animal models are presented and their differences/similarities are discussed.


Assuntos
Deutério/química , Glucose/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glucose/administração & dosagem , Injeções Intravenosas , Ácido Láctico/metabolismo , Metaboloma , Camundongos , Água
6.
NMR Biomed ; 34(2): e4446, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219722

RESUMO

This study explored the usefulness of multiple quantitative MRI approaches to detect pancreatic ductal adenocarcinomas in two murine models, PAN-02 and KPC. Methods assayed included 1 H T1 and T2 measurements, quantitative diffusivity mapping, magnetization transfer (MT) 1 H MRI throughout the abdomen and hyperpolarized 13 C spectroscopic imaging. The progress of the disease was followed as a function of its development; studies were also conducted for wildtype control mice and for mice with induced mild acute pancreatitis. Customized methods developed for scanning the motion- and artifact-prone mice abdomens allowed us to obtain quality 1 H images for these targeted regions. Contrasts between tumors and surrounding tissues, however, were significantly different. Anatomical images, T2 maps and MT did not yield significant contrast unless tumors were large. By contrast, tumors showed statistically lower diffusivities than their surroundings (≈8.3 ± 0.4 x 10-4 for PAN-02 and ≈10.2 ± 0.6 x 10-4 for KPC vs 13 ± 1 x 10-3 mm2 s-1 for surroundings), longer T1 relaxation times (≈1.44 ± 0.05 for PAN-02 and ≈1.45 ± 0.05 for KPC vs 0.95 ± 0.10 seconds for surroundings) and significantly higher lactate/pyruvate ratios by hyperpolarized 13 C MR (0.53 ± 0.2 for PAN-02 and 0.78 ± 0.2 for KPC vs 0.11 ± 0.04 for control and 0.31 ± 0.04 for pancreatitis-bearing mice). Although the latter could also distinguish early-stage tumors from healthy animal controls, their response was similar to that in our pancreatitis model. Still, this ambiguity could be lifted using the 1 H-based reporters. If confirmed for other kinds of pancreatic tumors this means that these approaches, combined, can provide a route to an early detection of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Doença Aguda , Animais , Artefatos , Isótopos de Carbono , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/transplante , Difusão , Genes Reporter , Proteínas Luminescentes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Movimento (Física) , Estadiamento de Neoplasias , Neoplasias Pancreáticas/patologia , Pancreatite/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Proteína Vermelha Fluorescente
7.
Bladder Cancer ; 7(2): 187-192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38994536

RESUMO

BACKGROUND: Urologic guidelines recommend perioperative instillation of chemotherapy after transurethral resection of bladder tumor (TURBT) to decrease tumor recurrence, yet implementation of this recommendation is partial due to associated morbidity. Hypertonic saline destroys cells by osmotic dehydration and might present a safer alternative. OBJECTIVE: To evaluate the safety of 3% hypertonic saline (Hypersal) intravesical instillation following TURBT in rats and in humans. METHODS: In 8 rats whose bladders were electrically injured, intravesical blue-dyed Hypersal was administered. We measured serum sodium levels before and after instillation and pathologically evaluated their pelvic cavity for signs of inflammation or blue discoloration. Twenty-four patients were recruited to the human trial (NIH-NCT04147182), 15 comprised the interventional and 10 the control group (one patient crossed over). Hypersal was given postoperatively. Serum sodium was measured before, 1 hour and 12-24 hours after instillation. Adverse effects were documented and compared between the groups. RESULTS: In rats, average sodium levels were 140.0 mEq/L and 140.3 mEq/L before and following instillation, respectively. Necropsy revealed no signs of inflammation or blue discoloration. In humans the average plasma sodium levels were 138.6 mEq∖L, 138.8 mEq∖L and 137.7 mEq∖L before, 1 hour and 12-24 hours after instillation, respectively. During the postoperative follow-up there was one case of fever. A month after the surgery, dysuria was reported by 5 patients while urgency and hematuria were reported by one patient each. The most severe adverse events were grade 2 on the Clavien-Dindo scale. Adverse events were similar in the control group. CONCLUSIONS: Hypersal instillation is safe and tolerable immediately after TURBT.

8.
J Biol Chem ; 289(42): 29014-29, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25193661

RESUMO

IFNß is a common therapeutic option to treat multiple sclerosis. It is unique among the family of type I IFNs in that it binds to the interferon receptors with high affinity, conferring exceptional biological properties. We have previously reported the generation of an interferon superagonist (dubbed YNSα8) that is built on the backbone of a low affinity IFNα but modified to exhibit higher receptor affinity than even for IFNß. Here, YNSα8 was fused with a 600-residue hydrophilic, unstructured N-terminal polypeptide chain comprising proline, alanine, and serine (PAS) to prolong its plasma half-life via "PASylation." PAS-YNSα8 exhibited a 10-fold increased half-life in both pharmacodynamic and pharmacokinetic assays in a transgenic mouse model harboring the human receptors, notably without any detectable loss in biological potency or bioavailability. This long-lived superagonist conferred significantly improved protection from MOG35-55-induced experimental autoimmune encephalomyelitis compared with IFNß, despite being injected with a 4-fold less frequency and at an overall 16-fold lower dosage. These data were corroborated by FACS measurements showing a decrease of CD11b(+)/CD45(hi) myeloid lineage cells detectable in the CNS, as well as a decrease in IBA(+) cells in spinal cord sections determined by immunohistochemistry for PAS-YNSα8-treated animals. Importantly, PAS-YNSα8 did not induce antibodies upon repeated administration, and its biological efficacy remained unchanged after 21 days of treatment. A striking correlation between increased levels of CD274 (PD-L1) transcripts from spleen-derived CD4(+) cells and improved clinical response to autoimmune encephalomyelitis was observed, indicating that, at least in this mouse model of multiple sclerosis, CD274 may serve as a biomarker to predict the effectiveness of IFN therapy to treat this complex disease.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Interferon Tipo I/agonistas , Interferon Tipo I/farmacologia , Peptídeos/química , Animais , Separação Celular , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Citometria de Fluxo , Humanos , Interferon beta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/tratamento farmacológico , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície , Resultado do Tratamento
9.
Diabetes ; 62(4): 1121-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23250359

RESUMO

We studied the effects of chronic angiotensin 1-7 (Ang 1-7) treatment in an experimental model of the metabolic syndrome, i.e., rats given high-fructose/low-magnesium diet (HFrD). Rats were fed on HFrD for 24 weeks with and without Ang 1-7 (576 µg/kg/day, s.c., Alzet pumps). After 6 months, Ang 1-7-treated animals had lower body weight (-9.5%), total fat mass (detected by magnetic resonance imaging), and serum triglycerides (-51%), improved glucose tolerance, and better insulin sensitivity. Similar metabolic effects were also evident, albeit in the absence of weight loss, in rats first exposed to HFrD for 5 months and then subjected to short-term (4 weeks) treatment with Ang 1-7. Six months of Ang 1-7 treatment were associated with lower plasma renin activity (-40%) and serum aldosterone (-48%), less hepatosteatatitis, and a reduction in epididymal adipocyte volume. The marked attenuation of macrophage infiltration in white adipose tissue (WAT) was associated with reduced levels of the pP65 protein in the epididymal fat tissue, suggesting less activation of the nuclear factor-κB (NFκB) pathway in Ang 1-7-treated rats. WAT from Ang 1-7-treated rats showed reduced NADPH-stimulated superoxide production. In single muscle fibers (myofibers) harvested and grown ex vivo for 10 days, myofibers from HFrD rats gave rise to 20% less myogenic cells than the Ang 1-7-treated rats. Fully developed adipocytes were present in most HFrD myofiber cultures but entirely absent in cultures from Ang 1-7-treated rats. In summary, Ang 1-7 had an ameliorating effect on insulin resistance, hypertriglyceridemia, fatty liver, obesity, adipositis, and myogenic and adipogenic differentiation in muscle tissue in the HFrD rats.


Assuntos
Angiotensina I/administração & dosagem , Fármacos Cardiovasculares/administração & dosagem , Carboidratos da Dieta/administração & dosagem , Frutose/administração & dosagem , Síndrome Metabólica/prevenção & controle , Fragmentos de Peptídeos/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Esquema de Medicação , Epididimo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Músculo Esquelético , Estresse Oxidativo , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Receptores Acoplados a Proteínas G/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
10.
J Biol Chem ; 287(53): 44676-83, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23150670

RESUMO

Most chemotherapeutic agents are blood-brain barrier (BBB) impermeants. HIV-1-derived TAT protein variants contain a transmembrane domain, which may enable them to cross the BBB and reach the brain. Here we synthesized CAYGRKKRRQRRR, a peptide containing a cysteine moiety attached to the N terminus of the transmembrane domain (C-TAT peptide), and studied its effects in an in vitro BBB model, which we found to reflect penetration by a receptor-independent pathway. Incubation of the brain capillary endothelial cell monolayer with 0.3-0.6 µmol/ml of this C-TAT peptide, for a period of 1-2 h, destabilizes brain capillary endothelial cell monolayer and introduces the ability of impermeant therapeutic agents including high molecular weight proteins to penetrate it substantially. The cysteinyl moiety at position 1 of the C-TAT peptide contributes largely to the destabilizing potency and the penetration efficacy of impermeant substances. The destabilizing effect was reversed using heparin. In summary, experimental conditions allowing a significant increase in entry of impermeant low and high molecular weight substances from the luminal (blood) to the abluminal side (brain) were found in an in vitro BBB model reflecting in vivo protein penetrability by a receptor-independent pathway.


Assuntos
Células Endoteliais/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Humanos , Modelos Biológicos , Peso Molecular , Peptídeos/genética , Permeabilidade , Transporte Proteico , Proteínas/química , Suínos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
11.
Ther Deliv ; 3(1): 17-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22833930

RESUMO

Several important pharmacological features can be integrated into injected drugs to enhance their therapeutic efficacy following administration. Short-lived peptide/protein drugs should be converted into long-lived species in vivo to avoid multiple injections. Circulating levels of anticancer agents need to be maintained within a narrow therapeutic range for prolonged period. Water-insoluble drugs must be turned into soluble species and blood-brain barrier-impermeable agents need to be modified to cross it following peripheral administrations. The derivatization requiring for achieving those desirable pharmacological features typically result in biologically/pharmacologically inactive products, unless those derivatizations can be carried out in a reversible fashion.


Assuntos
Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Peptídeos/química , Proteínas/química
12.
Bioconjug Chem ; 23(8): 1577-86, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22759320

RESUMO

We found that human serum albumin (HSA) contains a single binding domain for derivatives of long-chain fatty acid (LCFA)-like molecules in which the carboxylate is replaced by sulfonate. Accordingly, we have synthesized 16-sulfo-hexadecanoic acid-N-hydroxysuccinimide ester [HO(3)S-(CH(2))(15)-CONHS], an agent that reacts selectively with the amino side chains of peptides and proteins. A macromolecule containing a single 16-sulfohexadecanoate moiety associating with albumin with a K(a) value of 0.83 ± 0.08 × 10(6) M(-1), a sufficient affinity to extend the actions in vivo of such short-lived peptides and proteins. Subcutaneous administration of insulin-NHCO-(CH(2))(15)-SO(3)(-) into mice facilitated a glucose-lowering effect 4.3 times in duration and 6.6 times in area under the curve (AUC) as compared to an in vitro equipotent amount of Zn(2+)-free insulin. Similarly, subcutaneous and intravenous administration of exendin-4-NHCO-(CH(2))(15)-SO(3)(-) to mice yielded prolonged and stable reduction in glucose level, 5-9-fold longer than that of exendin-4. Also, a single subcutaneous administration of human interferon-α2-[NH-CO-(CH(2))(15)-SO(3)(-)](3) to mice yielded circulating antiviral activity over a period of 40 h. In conclusion, a simple, hydrophilic reagent has been engineered, synthesized, and studied. Its linkage to peptides and proteins in a monomodified fashion yielded hydrophilic, prolonged acting derivatives, due to their acquired ability to associate with serum albumin after administration.


Assuntos
Desenho de Fármacos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacocinética , Peptídeos/metabolismo , Peptídeos/farmacocinética , Albumina Sérica/metabolismo , Sequência de Aminoácidos , Animais , Disponibilidade Biológica , Glicemia/metabolismo , Ácidos Graxos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA