Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(10): 2203-2213.e5, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33711249

RESUMO

The midbody at the center of the intercellular bridge connecting dividing cells recruits the machinery essential for the final steps of cytokinesis.1-5 Successive abscission on both sides of the midbody generates a free midbody remnant (MBR) that can be inherited and accumulated in many cancer, immortalized, and stem cells, both in culture and in vivo.6-12 Strikingly, this organelle was recently shown to contain information that induces cancer cell proliferation, influences cell polarity, and promotes dorso-ventral axis specification upon interaction with recipient cells.13-16 Yet the mechanisms by which the MBR is captured by either a daughter cell or a distant cell are poorly described.10,14 Here, we report that BST2/tetherin, a well-established restriction factor that blocks the release of numerous enveloped viruses from the surface of infected cells,17-20 plays an analogous role in retaining midbody remnants. We found that BST2 is enriched at the midbody during cytokinesis and localizes at the surface of MBRs in a variety of cells. Knocking out BST2 induces the detachment of MBRs from the cell surface, their accumulation in the extracellular medium, and their transfer to distant cells. Mechanistically, the localization of BST2 at the MBR membrane is both necessary and sufficient for the interaction between MBRs and the cell surface. We thus propose that BST2 tethers post-cytokinetic midbody remnants to the cell surface. This finding reveals new parallels between cytokinesis and viral biology21-26 that unexpectedly extend beyond the ESCRT-dependent abscission step.


Assuntos
Antígenos CD , Antígeno 2 do Estroma da Médula Óssea , Citocinese , Antígenos CD/genética , Antígenos CD/fisiologia , Antígeno 2 do Estroma da Médula Óssea/fisiologia , Membrana Celular , Proteínas Ligadas por GPI/fisiologia , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Organelas
2.
Sci Rep ; 9(1): 5741, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952909

RESUMO

Tunneling nanotubes (TNTs) are actin-containing membrane protrusions that play an essential role in long-range intercellular communication. They are involved in development of various diseases by allowing transfer of pathogens or protein aggregates as well as organelles such as mitochondria. Increase in TNT formation has been linked to many pathological conditions. Here we show that nM concentrations of tolytoxin, a cyanobacterial macrolide that targets actin by inhibition of its polymerization, significantly decrease the number of TNT-connected cells, as well as transfer of mitochondria and α-synuclein fibrils in two different cell lines of neuronal (SH-SY5Y) and epithelial (SW13) origin. As the cytoskeleton of the tested cell remain preserved, this macrolide could serve as a valuable tool for future therapies against diseases propagated by TNTs.


Assuntos
Comunicação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piranos/farmacologia , Actinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Humanos , Neurônios/metabolismo
3.
PLoS Biol ; 12(1): e1001776, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24492262

RESUMO

Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Modelos Moleculares , Proteínas Quinases/química , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Histidina/química , Histidina/metabolismo , Cinética , Movimento (Física) , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA