Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2554, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781988

RESUMO

Insect galls are abnormal plant organs formed by gall-inducing insects to provide shelter and nutrients for themselves. Although insect galls are spatialized complex structures with unique shapes and functions, the molecular mechanism of the gall formation and the screening system for the gall inducing effectors remains unknown. Here, we demonstrate that an extract of a gall-inducing aphid, Schlechtendalia chinensis, induces an abnormal structure in the root-tip region of Arabidopsis seedlings. The abnormal structure is composed of stem-like cells, vascular, and protective tissues, as observed in typical insect galls. Furthermore, we confirm similarities in the gene expression profiles between the aphid-treated seedlings and the early developmental stages of Rhus javanica galls formed by S. chinensis. Based on the results, we propose a model system for analyzing the molecular mechanisms of gall formation: the Arabidopsis-based Gall-Forming Assay (Ab-GALFA). Ab-GALFA could be used not only as a model to elucidate the mechanisms underlying gall formation, but also as a bioassay system to isolate insect effector molecules of gall-induction.


Assuntos
Afídeos , Arabidopsis , Animais , Arabidopsis/genética , Insetos/genética , Afídeos/genética , Transcriptoma , Tumores de Planta/genética
2.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502330

RESUMO

Galls are characteristic plant structures formed by cell size enlargement and/or cell proliferation induced by parasitic or pathogenic organisms. Insects are a major inducer of galls, and insect galls can occur on plant leaves, stems, floral buds, flowers, fruits, or roots. Many of these exhibit unique shapes, providing shelter and nutrients to insects. To form unique gall structures, gall-inducing insects are believed to secrete certain effector molecules and hijack host developmental programs. However, the molecular mechanisms of insect gall induction and development remain largely unknown due to the difficulties associated with the study of non-model plants in the wild. Recent advances in next-generation sequencing have allowed us to determine the biological processes in non-model organisms, including gall-inducing insects and their host plants. In this review, we first summarize the adaptive significance of galls for insects and plants. Thereafter, we summarize recent progress regarding the molecular aspects of insect gall formation.


Assuntos
Interações Hospedeiro-Parasita , Insetos/fisiologia , Tumores de Planta/etiologia , Plantas/parasitologia , Animais
3.
PLoS One ; 14(10): e0223686, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31647845

RESUMO

Galls are plant structures generated by gall-inducing organisms including insects, nematodes, fungi, bacteria and viruses. Those made by insects generally consist of inner callus-like cells surrounded by lignified hard cells, supplying both nutrients and protection to the gall insects living inside. This indicates that gall insects hijack developmental processes in host plants to generate tissues for their own use. Although galls are morphologically diverse, the molecular mechanism for their development remains poorly understood. To identify genes involved in gall development, we performed RNA-sequencing based transcriptome analysis for leaf galls. We examined the young and mature galls of Glochidion obovatum (Phyllanthaceae), induced by the micromoth Caloptilia cecidophora (Lepidoptera: Gracillariidae), the leaf gall from Eurya japonica (Pentaphylacaceae) induced by Borboryctis euryae (Lepidoptera: Gracillariidae), and the strawberry-shaped leaf gall from Artemisia montana (Asteraceae) induced by gall midge Rhopalomyia yomogicola (Oligotrophini: Cecidomyiidae). Gene ontology (GO) analyses suggested that genes related to developmental processes are up-regulated, whereas ones related to photosynthesis are down-regulated in these three galls. Comparison of transcripts in these three galls together with the gall on leaves of Rhus javanica (Anacardiaceae), induced by the aphid Schlechtendalia chinensis (Hemiptera: Aphidoidea), suggested 38 genes commonly up-regulated in galls from different plant species. GO analysis showed that peptide biosynthesis and metabolism are commonly involved in the four different galls. Our results suggest that gall development involves common processes across gall inducers and plant taxa, providing an initial step towards understanding how they manipulate host plant developmental systems.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Patógeno/genética , Tumores de Planta/genética , Transcriptoma , Divisão Celular/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Fenótipo , Espécies Reativas de Oxigênio , Transdução de Sinais , Especificidade da Espécie
4.
Adv Exp Med Biol ; 1111: 139-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30499079

RESUMO

The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Arabidopsis/citologia , Membrana Celular/química , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo
5.
Nat Plants ; 4(11): 888-897, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30390081

RESUMO

Root hairs elongate by tip growth and simultaneously harden the shank by constructing the inner secondary cell wall layer. While much is known about the process of tip growth1, almost nothing is known about the mechanism by which root hairs harden the shank. Here we show that phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), the enzymatic product of FORMATION OF APLOID AND BINUCLEATE CELLS 1 (FAB1), is involved in the hardening of the shank in root hairs in Arabidopsis. FAB1 and PtdIns(3,5)P2 localize to the plasma membrane along the shank of growing root hairs. By contrast, phosphatidylinositol 4-phosphate 5-kinase 3 (PIP5K3) and PtdIns(4,5)P2 localize to the apex of the root hair where they are required for tip growth. Reduction of FAB1 function results in the formation of wavy root hairs while those of the wild type are straight. The localization of FAB1 in the plasma membrane of the root hair shank requires the activity of Rho-related GTPases from plants 10 (ROP10) and localization of ROP10 requires FAB1 activity. Computational modelling of root hair morphogenesis successfully reproduces the wavy root hair phenotype. Taken together, these data demonstrate that root hair shank hardening requires PtdIns(3,5)P2/ROP10 signalling.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Fosfatos de Fosfatidilinositol/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
6.
Plant Physiol ; 177(4): 1529-1538, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884680

RESUMO

Pollen viability depends on dynamic vacuolar changes during pollen development involving increases and decreases of vacuolar volume through water and osmolite accumulation and vacuolar fission. Mutations in FAB1A to FAB1D, the genes encoding phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]-converting kinases, are male gametophyte lethal in Arabidopsis (Arabidopsis thaliana) due to defective vacuolar fission after pollen mitosis I, suggesting a key role of the phospholipid in dynamic vacuolar organization. However, other genetic components that regulate the production of PI(3,5)P2 and its involvement in pollen germination and tube growth are unknown. Here, we identified and characterized Arabidopsis VAC14, a homolog of the yeast and metazoan VAC14s that are crucial for the production of PI(3,5)P2VAC14 is constitutively expressed and highly present in developing pollen. Loss of function of VAC14 was male gametophyte lethal due to defective pollen development. Ultrastructural studies showed that vacuolar fission after pollen mitosis I was compromised in vac14 mutant microspores, which led to pollen abortion. We further showed that inhibiting the production of PI(3,5)P2 or exogenous application of PI(3,5)P2 mimicked or rescued the pollen developmental defect of the vac14 mutant, respectively. Genetic interference and pharmacological approaches suggested a role of PI(3,5)P2 in pollen germination and tube growth. Our results provide insights into the function of VAC14 and, by inference, that of PI(3,5)P2 in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Vacúolos/metabolismo , Aminopiridinas/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas de Membrana/química , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Vacúolos/genética
7.
Plant Cell Physiol ; 58(7): 1185-1195, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158631

RESUMO

Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance phospholipid known to be associated with a wide variety of physiological functions in plants. However, the localization and dynamics of PI(3,5)P2 in plant cells remain largely unknown, partially due to the lack of an effective fluorescent probe. Using Arabidopsis transgenic plant expressing the PI(3,5)P2-labeling fluorescent probe (tagRFP-ML1N*2) developed based on a tandem repeat of the cytosolic phosphoinositide-interacting domain (ML1N) of the mammalian lysosomal transient receptor potential cation channel, Mucolipin 1 (TRPML1), here we show that PI(3,5)P2 is predominantly localized on the limited membranes of the FAB1- and SNX1-positive late endosomes, but rarely localized on the membranes of plant vacuoles or trans-Golgi network/early endosomes of cortical cells of the root differentiation zone. The late endosomal localization of tagRFP-ML1N*2 is reduced or abolished by pharmacological inhibition or genetic knockdown of expression of genes encoding PI(3,5)P2-synthesizing enzymes, FAB1A/B, but markedly increased with FAB1A overexpression. Notably, reactive oxygen species (ROS) significantly increase late endosomal levels of PI(3,5)P2. Thus, tandem ML1N-based PI(3,5)P2 probes can reliably monitor intracellular dynamics of PI(3,5)P2 in Arabidopsis cells with less binding activity to other endomembrane organelles.


Assuntos
Arabidopsis/metabolismo , Corantes Fluorescentes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Endossomos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Microscopia Confocal , Fosfatidilinositóis/análise , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo , Proteína Vermelha Fluorescente
8.
Plant Cell Physiol ; 58(1): 120-129, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803131

RESUMO

Phosphoinositides play an important role in various membrane trafficking events in eukaryotes. One of them, however, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], has not been studied widely in plants. Using a combination of fluorescent reporter proteins and the PI(3,5)P2-specific inhibitor YM202636, here we demonstrated that in Arabidopsis thaliana, PI(3,5)P2 affects various membrane trafficking events, mostly in the post-Golgi routes. We found that YM201636 treatment effectively reduced PI(3,5)P2 concentration not only in the wild type but also in FAB1A-overexpressing Arabidopsis plants. In particular, reduced PI(3,5)P2 levels caused abnormal membrane dynamics of plasma membrane proteins, AUX1 and BOR1, with different trafficking patterns. Secretion and morphological characteristics of late endosomes and vacuoles were also affected by the decreased PI(3,5)P2 production. These pleiotropic defects in the post-Golgi trafficking events were caused by the inhibition of PI(3,5)P2 production. This effect is probably mediated by the inhibition of maturation of FAB1-positive late endosomes, thereby impairing late endosome function. In conclusion, our results imply that in Arabidopsis, late endosomes are involved in multiple post-Golgi membrane trafficking routes including not only vacuolar trafficking and endocytosis but also secretion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Aminopiridinas/farmacologia , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pleiotropia Genética/genética , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Mutação , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
9.
Plant Physiol ; 169(3): 1961-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26353760

RESUMO

Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is an important lipid in membrane trafficking in animal and yeast systems; however, its role is still largely obscure in plants. Here, we demonstrate that the phosphatidylinositol 3-phosphate 5-kinase, formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), and its product, PtdIns(3,5)P2, are essential for the maturation process of endosomes to mediate cortical microtubule association of endosomes, thereby controlling proper PIN-FORMED protein trafficking in young cortical and stele cells of root. We found that FAB1 predominantly localizes on the Sorting Nexin1 (SNX1)-residing late endosomes, and a loss of FAB1 function causes the release of late endosomal proteins, Ara7, and SNX1 from the endosome membrane, indicating that FAB1, or its product PtdIns(3,5)P2, mediates the maturation process of the late endosomes. We also found that loss of FAB1 function causes the release of endosomes from cortical microtubules and disturbs proper cortical microtubule organization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Endossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Microtúbulos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Ácidos Indolacéticos/metabolismo , Membranas Intracelulares/metabolismo , Modelos Biológicos , Mutação , Fosfatos/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
Plant J ; 73(5): 761-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23167462

RESUMO

Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Colletotrichum/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Regulação para Baixo , Secas , Congelamento , Perfilação da Expressão Gênica , Leupeptinas/farmacologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/microbiologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Estresse Fisiológico , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
11.
Planta ; 235(4): 841-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22089884

RESUMO

The bacterial merC gene from the Tn21-encoded mer operon is a potential molecular tool for improving the efficiency of metal phytoremediation. Arabidopsis SNARE molecules, including SYP111, SYP121, and AtVAM3 (SYP22), were attached to the C-terminus of MerC to target the protein to various organelles. The subcellular localization of transiently expressed GFP-fused MerC-SYP111, MerC-SYP121, and MerC-AtVAM3 was examined in Arabidopsis suspension-cultured cells. We found that GFP-MerC-SYP111 and GFP-MerC-SYP121 localized to the plasma membrane, whereas GFP-AtVAM3 localized to the vacuolar membranes. These results demonstrate that SYP111/SYP121 and AtVAM3 target foreign molecules to the plasma membrane and vacuolar membrane, respectively. To enhance the efficiency and potential of plants to sequester and accumulate cadmium from contaminated sites, transgenic Arabidopsis plants expressing MerC, MerC-SYP111, MerC-SYP121, or MerC-AtVAM3 were generated. The transgenic plants that expressed MerC, MerC-SYP121, or MerC-AtVAM3 appeared to be normal, whereas the transgenic that expressed MerC-SYP111 exhibited severe growth defects. The transgenic plants expressing merC-SYP121 were more resistant to cadmium than the wild type and accumulated significantly more cadmium. Thus, the expression of MerC-SYP121 in the plant plasma membrane may provide an ecologically compatible approach for the phytoremediation of cadmium pollution.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Cádmio/metabolismo , Proteínas de Transporte de Cátions/biossíntese , Proteínas Qa-SNARE/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas SNARE/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biodegradação Ambiental , Proteínas de Transporte de Cátions/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Engenharia Genética , Variação Genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/genética , Proteínas Recombinantes de Fusão/genética , Proteínas SNARE/genética , Transformação Genética
12.
Plant Cell Physiol ; 44(10): 1045-54, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14581629

RESUMO

Plant vacuoles are the largest of organelles, performing various functions in cellular metabolism, morphogenesis and cell division. Dynamic changes in vacuoles during mitosis were studied by monitoring tubular structure of vacuolar membrane (TVM) in living transgenic tobacco BY-2 cells stably expressing a GFP-AtVam3p fusion protein (BY-GV). Comprehensive images of the complicated TVM configurations were obtained by reconstructing three-dimensional (3-D) surface structures from sequential confocal sections, using newly developed software, SSR (stereo-structure reconstructor). Using the surface modeling technique, we succeeded for the first time in clarifying the development process of TVMs and the topological relationship between TVMs and large vacuoles. TVMs, initially organized from large vacuoles, elongated to encircle the spindle at metaphase. Subsequently, the TVMs invaded the equatorial region from anaphase to telophase, and then they were divided to the two daughter cells by the cell plate at cytokinesis. When the daughter nuclei were separating from the cell plate, some TVMs enlarged to form large vacuoles near the division site. Spatial analysis revealed that from anaphase until cytokinesis, TVMs connected the two large vacuoles and functioned as a route for inter-vacuolar transport. Furthermore, the experiments using the inhibitor for actin microfilaments indicated that the microfilaments were indispensable for the development and the maintenance of TVMs.


Assuntos
Mitose/fisiologia , Nicotiana/citologia , Vacúolos/ultraestrutura , Agrobacterium tumefaciens/genética , Processamento de Imagem Assistida por Computador , Membranas Intracelulares/ultraestrutura , Metáfase , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/ultraestrutura , Nicotiana/ultraestrutura
13.
FEBS Lett ; 543(1-3): 108-12, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12753915

RESUMO

Palytoxin (PTX) induces a cation channel through interaction with Na(+),K(+)-ATPase. It is unclear how this action relates to the enzyme catalytic activity. We examined whether the action of PTX depends on the catalytic domain specific for Na(+),K(+)-ATPase. Wild-type Na(+),K(+)-ATPase alpha-subunit (NNN) or its chimera (NCN), in which the catalytic domain was replaced with that of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase, was co-expressed with beta-subunit in the yeast Saccharomyces cerevisiae. PTX (0.1-100 nM) increased K(+) efflux in NNN- or NCN-transfected cells to a similar degree but not in non-transfected cells. When ouabain-resistant NNN and NCN were expressed, PTX also increased K(+) efflux. Ouabain inhibited the effect of PTX in NNN or NCN cells but not in ouabain-resistant cells. These data suggest that the channel-forming action of PTX does not depend on the catalytic domain species.


Assuntos
Acrilamidas/farmacologia , Saccharomyces cerevisiae/genética , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Domínio Catalítico , Venenos de Cnidários , Retículo Endoplasmático/enzimologia , Inibidores Enzimáticos/farmacologia , Transporte de Íons/efeitos dos fármacos , Ouabaína/farmacologia , Potássio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , ATPase Trocadora de Sódio-Potássio/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA