Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614383

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Assuntos
Movimento Celular , Proliferação de Células , Macrófagos , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Transcrição STAT3/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Monocrotalina , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Becaplermina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
2.
Hepatol Res ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430513

RESUMO

BACKGROUND AND AIM: Autotaxin (ATX) is an extracellular lysophospholipase D that catalyzes the hydrolysis of lysophosphatidylcholine into lysophosphatidic acid (LPA). Recent accumulating evidence indicates the biological roles of ATX in malignant tumors. However, the expression and clinical implications of ATX in human cholangiocarcinoma (CCA) remain elusive. METHODS: In this study, the expression of ATX in 97 human CCA tissues was evaluated by immunohistochemistry. Serum ATX levels were determined in CCA patients (n = 26) and healthy subjects (n = 8). Autotaxin expression in cell types within the tumor microenvironment was characterized by immunofluorescence staining. RESULTS: High ATX expression in CCA tissue was significantly associated with a higher frequency of lymph node metastasis (p = 0.050). High ATX expression was correlated with shorter overall survival (p = 0.032) and recurrence-free survival (RFS) (p = 0.001) than low ATX expression. In multivariate Cox analysis, high ATX expression (p = 0.019) was an independent factor for shorter RFS. Compared with low ATX expression, high ATX expression was significantly associated with higher Ki-67-positive cell counts (p < 0.001). Serum ATX levels were significantly higher in male CCA patients than in healthy male subjects (p = 0.030). In the tumor microenvironment of CCA, ATX protein was predominantly expressed in tumor cells, cancer-associated fibroblasts, plasma cells, and biliary epithelial cells. CONCLUSIONS: Our study highlights the clinical evidence and independent prognostic value of ATX in human CCA.

3.
Hepatol Res ; 53(2): 145-159, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36149410

RESUMO

AIM: Sinusoidal obstruction syndrome (SOS) induced by oxaliplatin-including chemotherapies (OXCx) is associated with impaired hepatic reserve and higher morbidity after hepatic resection. However, in the absence of an appropriate animal experimental model, little is known about its pathophysiology. This study aimed to establish a clinically relevant reproducible model of FOLFOX-induced SOS and to compare the clinical/histopathological features between the clinical and animal SOS settings. METHODS: We performed clinical/pathological analyses of colorectal liver metastasis (CRLM) patients who underwent hepatectomy with/without preoperative treatment of FOLFOX (n = 22/18). Male micro-minipigs were treated with 50% of the standard human dosage of the FOLFOX regimen. RESULTS: In contrast to the monocrotaline-induced SOS model in rats, hepatomegaly, ascites, congestion, and coagulative necrosis of hepatocytes were absent in patients with CRLM with OXCx pretreatment and OXCx-treated micro-minipigs. In parallel to CRLM cases with OXCx pretreatment, OXCx-challenged micro-minipigs exhibited deteriorated indocyanine green clearance, morphological alteration of liver sinusoidal endothelial cells, and upregulated matrix metalloproteinase-9. Using our novel porcine SOS model, we identified the hepatoprotective influence of recombinant human soluble thrombomodulin in OXCx-SOS. CONCLUSIONS: With distinct differences between monocrotaline-induced rat SOS and human/pig OXCx-SOS, our pig OXCx-SOS model serves as a preclinical platform for future investigations to dissect the pathophysiology of OXCx-SOS and seek preventive strategies.

4.
Life Sci ; 288: 120171, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822800

RESUMO

AIM: The abnormal expression of oncogenic tyrosine kinase receptors such as platelet-derived growth factor receptors (PDGFRs) has been reported in cancer progression. However, the role of PDGFRs in the human androgen-independent prostate cancer PC-3 cell line is not well understood. Thus, this study examined the role of PDGFRs in androgen-independent PC-3 cells. MAIN METHODS: PDGFR mRNA and protein expression was determined by quantitative real-time PCR and western blotting, respectively. The effects of the tyrosine kinase inhibitor imatinib (imatinib mesylate) and small interfering RNAs (siRNAs) were determined by a Cell Counting Kit-8 assay, bromodeoxyuridine assay, and Transwell migration assay. The in vivo effect of imatinib was analyzed using a tumor formation assay in nude mice. KEY FINDINGS: PDGFRα was upregulated in androgen-independent PC-3 cells compared with normal prostate epithelial cells. PDGF-BB induced the phosphorylation of PDGFRα and downstream signaling molecules, including Akt, in a dose-dependent manner. Imatinib reduced the phosphorylation of the PDGFRα/Akt axis. Imatinib also suppressed the viability, proliferation, migration, and tumor growth of PC-3 cells. PDGFRα knockdown by siRNA decreased the viability and migration of PC-3 cells. SIGNIFICANCE: These results demonstrated the distinct contribution of PDGFRα signaling to the proliferation and migration of PC-3 cells and suggested the potential for PDGFRα as a therapeutic target for metastatic and androgen-independent prostate cancer.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Neoplasias da Próstata/prevenção & controle , RNA Interferente Pequeno/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Transfusion ; 61(7): 1998-2007, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096059

RESUMO

BACKGROUND: In order to tackle the COVID-19 pandemic, a COVID-19 convalescent plasma (CCP) procurement program was initiated in Japan in April 2020. The program was a collaboration between a government-managed national hospital, an infectious disease research institute, and a blood banking organization. Each party assumed different responsibilities: recruitment, SARS-CoV-2 antibody profiling, and plasmapheresis; conduction of screening tests; and SARS-CoV-2 blood testing, respectively. METHODS: We adopted a two-point screening approach before the collected CCP was labeled as a CCP product for investigational use, for which we mainly tested anti-SARS-CoV-2 antibody eligibility and blood product eligibility. Anti-SARS-CoV-2 spike protein titer was measured using enzyme-linked immunosorbent assay, and the IC50 value was denoted as the neutralizing activity. Blood donor eligibility was extended beyond the normal blood donation guidelines to include a broader range of participants. After both eligibility criteria were confirmed, participants were asked to revisit the hospital for blood donation, which is a unique aspect of the Japanese CCP program, as most donations are taking place in normal blood donation venues in other countries. Some donors were re-scheduled for repeat plasma donations. As public interest in anti-SARS-CoV-2 antibodies increased, test results were given to the participants. RESULTS: As of September 17, 2020, our collection of CCP products was sufficient to treat more than 100 patients. As a result, projects for administration and distribution are also being conducted. CONCLUSIONS: We successfully implemented a CCP procurement scheme with the goal to expand to other parts of the country to improve treatment options for COVID-19.


Assuntos
Doadores de Sangue , COVID-19/imunologia , COVID-19/virologia , Convalescença , Soros Imunes/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Preservação de Sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , Feminino , Humanos , Imunização Passiva/métodos , Japão , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Pandemias , Plasmaferese , Adulto Jovem
6.
Front Pharmacol ; 12: 667474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959030

RESUMO

Vascular endothelial growth factor (VEGF) signaling plays a critical role in the carcinogenesis and tumor development of several cancer types. However, its pathological significance in prostate cancer, one of the most frequent and lethal malignancies in men, remains unclear. In the present study, we focused on a pathological role of the VEGF receptors (VEGFRs), and examined their expression and effects of MAZ51 (an inhibitor of the tyrosine kinase of VEGFR-3) on cell proliferation, migration, and tumor growth in human prostate cancer cells. The expression level of VEGFR-3 was higher in androgen-independent and highly metastatic prostate cancer PC-3 cells than in other prostate PrEC, LNCaP, and DU145 cells. In PC-3 cells, VEGFR-3 and Akt were phosphorylated following a stimulation with 50 ng/ml VEGF-C, and these phosphorylations were blocked by 3 µM MAZ51. Interestingly, PC-3 cells themselves secreted VEGF-C, which was markedly larger amount compared with PrEC, LNCaP, and DU145 cells. MAZ51 reduced the expression of VEGFR-3 but not VEGFR-1 and VEGFR-2. The proliferation of PC-3 cells was inhibited by MAZ51 (IC50 = 2.7 µM) and VEGFR-3 siRNA, and partly decreased by 100 nM GSK690693 (an Akt inhibitor) and 300 nM VEGFR2 Kinase Inhibitor I. MAZ51 and VEGFR-3 siRNA also attenuated the VEGF-C-induced migration of PC-3 cells. Moreover, MAZ51 blocked the tumor growth of PC-3 cells in a xenograft mouse model. These results suggest that VEGFR-3 signaling contributes to the cell proliferation, migration, and tumor growth of androgen-independent/highly metastatic prostate cancer. Therefore, the inhibition of VEGFR-3 has potential as a novel therapeutic target for the treatment for prostate cancer.

7.
Nihon Yakurigaku Zasshi ; 156(3): 161-165, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33952845

RESUMO

Pulmonary hypertension (PH) is defined as mean pulmonary arterial pressure at rest ≥25 mmHg. Pulmonary arterial hypertension (PAH) is classified as group 1 of PH and is a progressive and fatal disease of the pulmonary artery. The pathogenesis is sustained pulmonary vasoconstriction and pulmonary vascular remodeling, which cause progressive elevations in pulmonary vascular resistance and pulmonary arterial pressure. Elevated pulmonary arterial pressure leads to right heart failure and finally death. The pulmonary vascular remodeling is triggered by an increase in cytosolic Ca2+ concentration ([Ca2+]cyt). [Ca2+]cyt is regulated by the stimulation of vasoconstrictors and growth factors though their receptors and ion channels on the plasma membrane. It has been reported that the epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) are involved in the development of PAH. Upon binding of these growth factors with their specific receptor tyrosine kinases, their receptors activate cytosolic Ca2+ signaling and signal transduction cascades to induce cell proliferation, differentiation, and migration. Expressions of some growth factors and their receptors upregulate in PAH patients, which contributes to the formation of vascular remodeling and plexiform lesions in PAH. We have recently found that enhanced Ca2+-sensing receptor (CaSR) function is involved the development of PAH and CaSR expression is upregulated by PDGF in pulmonary arterial smooth muscle cells (PASMCs) from idiopathic PAH patients. This review will be discussed the physiological and pathological roles of growth factors in PAH.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Cálcio , Proliferação de Células , Humanos , Músculo Liso Vascular , Artéria Pulmonar , Fator A de Crescimento do Endotélio Vascular
8.
ASAIO J ; 67(5): 511-516, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492852

RESUMO

Patients with the coronavirus disease 2019 (COVID-19) sometimes develop refractory respiratory failure and may require venovenous extracorporeal membrane oxygenation (VV-ECMO). It is known that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sometimes present in the blood of COVID-19 patients. VV-ECMO is often used for several weeks, and plasma leaks can occur, albeit rarely. Hence, in terms of infection control, a concern is that SARS-CoV-2 may leak from the gas outlet port of the oxygenator during ECMO support of critically ill COVID-19 patients. The aim of this study was to clarify whether SARS-CoV-2 leaks from the oxygenator during ECMO support. Five patients with critical COVID-19 pneumonia were placed on VV-ECMO. Silicone-coated polypropylene membrane oxygenators were used in the ECMO circuits for these patients. SARS-CoV-2 ribonucleic acid (RNA) was measured by quantitative reverse transcription polymerase chain reaction in serum and at the gas outlet port of the ECMO circuit at the time of circuit replacement or liberation from ECMO. SARS-CoV-2 RNA was detected in the gas outlet port of the ECMO circuit for three of the five patients. None of the medical staff involved in the care of these five patients has been infected with COVID-19. In conclusion, SARS-CoV-2 could leak to the gas outlet port of the ECMO circuit through silicone-coated polypropylene membranes during ECMO support of critically ill COVID-19 patients.


Assuntos
COVID-19/terapia , Oxigenação por Membrana Extracorpórea/efeitos adversos , SARS-CoV-2/isolamento & purificação , COVID-19/complicações , Humanos , Estudos Prospectivos , RNA Viral/análise , Insuficiência Respiratória/terapia
9.
Cancer Discov ; 11(1): 158-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32847940

RESUMO

Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Trifosfato de Adenosina , Neoplasias , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
10.
J Physiol Sci ; 70(1): 44, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962633

RESUMO

Glucose uptake and adenosine triphosphate (ATP) generation are important for the survival and growth of endothelial cells. An increase of glucose uptake under hypoxia was previously shown to be associated with the increased expression of glucose transporters (GLUTs). However, the regulation of GLUT trafficking to the cell surface has not been examined in detail. Here, we report the characterization of GLUT1 translocation to the plasma membrane during hypoxia in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were exposed to hypoxia (1% O2) for 12 h, which significantly induced GLUT1 expression and translocation to the plasma membrane. GLUT1 translocation was associated with a decrease of intracellular ATP by hypoxia. Decreasing ATP levels with antimycin-A and 2-deoxyglucose induced GLUT1 translocation under normoxia. The induction of hypoxia-inducible factor-1α under normoxia did not influence the cell surface expression of GLUT1 or cellular ATP concentration. Interestingly, the translocation of GLUT1 induced by hypoxia was inhibited by the ATP-sensitive potassium (KATP) channel inhibitor glibenclamide, while the mitochondrial KATP channel inhibitor 5-HD did not influence GLUT1 translocation during hypoxia. These observations indicate that a decrease of intracellular ATP triggers GLUT1 translocation to the plasma membrane and is mediated by KATP channels, which would contribute to glucose uptake in HUVECs during hypoxia.


Assuntos
Membrana Celular/metabolismo , Desoxiglucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Trifosfato de Adenosina/metabolismo , Hipóxia Celular , Células Cultivadas , Transportador de Glucose Tipo 1/genética , Humanos , Canais KATP/genética , Canais KATP/metabolismo , Transporte Proteico
11.
BMC Cancer ; 19(1): 621, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238892

RESUMO

BACKGROUND: Noninvasive biomarkers are urgently needed for optimal management of nonalcoholic fatty liver disease (NAFLD) for the prevention of disease progression into nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). In order to identify the biomarkers, we generated the swine hepatocellular carcinoma (HCC) model associated with NAFLD and performed serum proteomics on the model. METHODS: Microminipigs were fed a high-fat diet to induce NAFLD and a normal diet as the control. To induce HCC, diethylnitrosamine was intraperitoneally administered. Biopsied liver samples were histopathologically analyzed every 12 weeks. Serum proteins were separated by blue native two-dimensional gel electrophoresis and proteins of interest were subsequently identified by MALDI-TOF MS/MS. Human serum samples were analyzed to validate the candidate protein using antibody-mediated characterization. RESULTS: In the NAFLD pigs, hepatic histology of nonalcoholic steatohepatitis (NASH) was observed at 36 weeks, and HCC developed at 60 weeks. Among serum proteins identified with MALDI-TOF MS/MS, serum inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), an acute response protein which is secreted primarily by liver, was identified as the most characteristic protein corresponding with NAFLD progression and HCC development in the NAFLD pigs. With immunoassay, serum ITIH4 levels in the NAFLD pigs were chronologically increased in comparison with those in control animal. Furthermore, immunohistochemistry showed ITIH4 expression in hepatocytes also increased in both the cancer lesions and parenchyma as NAFLD progressed. Human study is also consistent with this observation because serum ITIH4 levels were significantly higher in HCC-NAFLD patients than in the simple steatosis, NASH, and virus-related HCC patients. Of note, HCC-NAFLD patients who had higher serum ITIH4 levels exhibited poorer prognosis after hepatectomy. CONCLUSIONS: We established an HCC pig model associated with NAFLD. Serum proteomics on the swine HCC with NAFLD model implicated ITIH4 as a non-invasive biomarker reflecting NAFLD progression as well as subsequent HCC development. Most importantly, the results in the swine study have been validated in human cohort studies. Dissecting speciation of serum ITIH4 promises to have clinical utility in monitoring the disease.


Assuntos
Proteínas de Fase Aguda/metabolismo , Proteínas Sanguíneas/metabolismo , Carcinoma Hepatocelular/metabolismo , Glicoproteínas/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteínas de Fase Aguda/análise , Adolescente , Adulto , Idoso , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Carcinógenos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Dieta Hiperlipídica , Dietilnitrosamina , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hepatectomia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Prognóstico , Proteômica , Suínos , Porco Miniatura , Fatores de Tempo , Adulto Jovem
12.
J Pharmacol Sci ; 139(3): 254-257, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30808588

RESUMO

The carcinogenesis and development of prostate cancer are mediated by enhanced Ca2+ signaling. In the present study, the pharmacological profile of the Ca2+-sensing receptor (CaSR) antagonists (calcilytics) was examined in human prostate cancer PC-3 cells. NPS2143 and Calhex 231 blocked extracellular Ca2+-induced increases in cytosolic [Ca2+]. NPS2143 and Calhex 231 inhibited cell proliferation (IC50 = 7.4 and 10.3 µM, respectively) and migration. The exposure to NPS2143 or Calhex 231 down-regulated CaSR protein expression. These results demonstrated that calcilytics inhibited cell proliferation/migration and down-regulated CaSR expression in human prostate cancer cells, suggesting their potential as novel therapeutic drugs for prostate cancer.


Assuntos
Benzamidas/farmacologia , Cicloexilaminas/farmacologia , Naftalenos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Receptores de Detecção de Cálcio/antagonistas & inibidores , Benzamidas/administração & dosagem , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicloexilaminas/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Naftalenos/administração & dosagem , Células PC-3 , Neoplasias da Próstata/patologia , Receptores de Detecção de Cálcio/genética
13.
Sci Rep ; 9(1): 1560, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733465

RESUMO

Choroidal neovascularization (CNV) is associated with age-related macular degeneration (AMD), a major cause of vision loss among elderly people. Vascular endothelial cell growth factor (VEGF) is essential for the development and progression of AMD, and VEGF signaling molecules are effective targets for the treatment of AMD. We recently reported that activator of G-protein signaling 8 (AGS8), a receptor-independent Gßγ regulator, is involved in VEGF-induced angiogenesis in cultured endothelial cells (EC); however, the role of AGS8 in CNV is not yet understood. This study aimed to explore the role of AGS8 in CNV in cultured cells, explanted choroid tissue, and laser-induced CNV in a mouse AMD model. AGS8 knockdown in cultured choroidal EC inhibited VEGF-induced VEGFR-2 phosphorylation, cell proliferation, and migration. AGS8 knockdown also downregulated cell sprouting from mouse choroidal tissue in ex vivo culture. A mouse model of laser-induced CNV, created to analyze the roles of AGS8 in vivo, demonstrated that AGS8 mRNA was significantly upregulated in choroidal lesions and AGS8 was specifically expressed in the neovasculature. Local AGS8 knockdown in intravitreal tissue significantly inhibited laser-induced AGS8 upregulation and suppressed CNV, suggesting that AGS8 knockdown in the choroid has therapeutic potential for AMD. Together, these results demonstrate that AGS8 plays critical roles in VEGF-induced CNV.


Assuntos
Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macaca mulatta , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , RNA Interferente Pequeno/genética , Fator A de Crescimento do Endotélio Vascular/genética
14.
Oncotarget ; 9(21): 15591-15605, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643995

RESUMO

N,N'-Bis(salicylidene)ethylenediamine iron (Fe(Salen)) is an anti-cancer agent with intrinsic magnetic property. Here, we covalently linked Fe(Salen) to paclitaxel (PTX), a widely used anti-cancer drug, to obtain a magnetized paclitaxel conjugate (M-PTX), which exhibited magnetic characteristics for magnet-guided drug delivery and MRI visualization. M-PTX increased apoptosis and G2/M arrest of cultured human oral cancer cell lines in the same manner as PTX. Furthermore, marked contrast intensity was obtained in magnetic resonance imaging (MRI) of M-PTX. In a mouse oral cancer model, a permanent magnet placed on the body surface adjacent to the tumor resulted in distinct accumulation of M-PTX, and the anti-cancer effect was greater than that of M-PTX without the magnet. We believe that this strategy may improve future cancer chemotherapy by providing conventional anti-cancer drugs with novel functionalities such as magnet-guided drug delivery or MRI-based visualization/quantitation of drug distribution.

15.
Exp Cell Res ; 368(1): 13-23, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649427

RESUMO

Vascular endothelial growth factor C (VEGFC) and its cognate receptor VEGFR-3 play a key role in lymphangiogenesis. We previously reported that an ischemia-inducible Gßγ signal regulator, activator of G-protein signaling 8 (AGS8), regulated the subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR-2) and influenced VEGFA-induced signaling in vascular endothelial cells. Here, we report that AGS8 regulates VEGFR-3, which is another subtype of the VEGF receptor family, and mediates VEGFC signaling in human dermal lymphatic endothelial cells (HDLECs). VEGFC stimulated the proliferation of HDLECs and tube formation by HDLECs, which were inhibited by knocking down AGS8 by small interfering RNA (siRNA). AGS8 siRNA inhibited VEGFC-mediated phosphorylation of VEGFR-3 and its downstream molecules, including ERK1/2 and AKT. Analysis of fluorescence-activated cell sorting and immunofluorescence staining demonstrated that AGS8 knockdown was associated with a reduction of VEGFR-3 at the cell surface. Endocytosis inhibitors did not rescue the decrease of cell-surface VEGFR-3, suggesting that AGS8 regulated the trafficking of VEGFR-3 to the plasma membrane. An immunoprecipitation assay indicated that VEGFR-3 formed a complex including AGS8 and Gßγ in cells. These data suggest the novel regulation of VEGFC-VEGFR-3 by AGS8 in HDLECs and a potential role for AGS8 in lymphangiogenesis.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Neoplasias/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfangiogênese/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
16.
J Neurol Surg A Cent Eur Neurosurg ; 79(4): 309-315, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29294510

RESUMO

OBJECTIVE: Maximum resection with minimum damage to normal structures is required for a better clinical outcome. Several efficient surgical devices such as the Cavitron ultrasonic surgical aspirator are available. Our group developed the actuator-driven pulsed water jet (ADPJ) to dissect soft tissue with vessel preservation. Although these devices are very effective for resection, tumor seeding is a potential risk. The present study investigated the control of splashing during ADPJ use. We demonstrate the effect of additional water flow around the instrument tip to veil the splashing. METHODS: Pulsed water jet was ejected from the tip of the ADPJ nozzle. Effects of ADPJ parameters such as input voltage, suction pressure, and distance between the nozzle and the target (standoff distance) on the amount of splashing were analyzed. Methylene blue solution was ejected on photo paper, gelatin brain phantom, and porcine brain harvested and subsequently immersed into physiologic saline to quantify the amount of splashing. RESULTS: High-input voltage and a long standoff distance had significant correlations with large amounts of splashing (r > 0.5; p < 0.01). However, suction pressure had no correlation (r = 0.23). Additional water flow combined with the ADPJ decreased the amount of splashing. A high-speed camera recording revealed that the additional water flow formed a water veil that prevented droplet dispersion, as confirmed with experiments using the brain phantom and porcine brain, in which the irregularity and elasticity are specific. CONCLUSIONS: The veil effect of additional water flow is important to reduce splashing during ADPJ use and can minimize the potential risk of dissemination and enhance the safety of the ADPJ.


Assuntos
Encéfalo/cirurgia , Procedimentos Neurocirúrgicos/instrumentação , Água , Animais , Procedimentos Neurocirúrgicos/métodos , Suínos
17.
J Physiol Sci ; 68(1): 77-87, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27995459

RESUMO

Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic and thus catecholamine signaling is activated thereafter to compensate for cardiac dysfunction. The mechanism of such compensation by catecholamine signaling has been traditionally understood to be cyclic AMP-dependent protein kinase (PKA)-mediated enforcement of cardiac contractility. We hypothesized that the exchange protein activated by cAMP (Epac), a newly identified target of cAMP signaling that functions independently of PKA, also plays a key role in this mechanism. In cultured cardiac myocytes, activation of Epac attenuated the inhibitory effect of interleukin-6 on the increase of intracellular Ca2+ concentration and contractility in response to isoproterenol, most likely through inhibition of the Jak-STAT pathway via SOCS3, with subsequent changes in inducible nitric oxide synthase expression. These findings suggest a new role of catecholamine signaling in compensating for cardiac dysfunction in heart failure. Epac and its downstream pathway may be a novel target for treating cardiac dysfunction in endotoxemia.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Interleucina-6/metabolismo , Miócitos Cardíacos/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Janus Quinases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/fisiologia , Ratos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
18.
J Pharmacol Sci ; 134(4): 203-210, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28779994

RESUMO

Iron-salen, i.e., µ-oxo-N,N'-bis(salicylidene)ethylenediamine iron (Fe(Salen)) was a recently identified as a new anti-cancer compound with intrinsic magnetic properties. Chelation therapy has been widely used in management of metallic poisoning, because an administration of agents that bind metals can prevent potential lethal effects of particular metal. In this study, we confirmed the therapeutic effect of deferoxamine mesylate (DFO) chelation against Fe(Salen) as part of the chelator antidote efficacy. DFO administration resulted in reduced cytotoxicity and ROS generation by Fe(Salen) in cancer cells. DFO (25 mg/kg) reduced the onset of Fe(Salen) (25 mg/kg)-induced acute liver and renal dysfunction. DFO (300 mg/kg) improves survival rate after systematic injection of a fatal dose of Fe(Salen) (200 mg/kg) in mice. DFO enables the use of higher Fe(Salen) doses to treat progressive states of cancer, and it also appears to decrease the acute side effects of Fe(Salen). This makes DFO a potential antidote candidate for Fe(Salen)-based cancer treatments, and this novel strategy could be widely used in minimally-invasive clinical settings.


Assuntos
Antídotos , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Quelantes/efeitos adversos , Quelantes/toxicidade , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Etilenodiaminas/efeitos adversos , Etilenodiaminas/toxicidade , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Ferro/efeitos adversos , Ferro/toxicidade , Injúria Renal Aguda/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Quelantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Etilenodiaminas/administração & dosagem , Humanos , Ferro/administração & dosagem , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
19.
PLoS One ; 12(1): e0167647, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060824

RESUMO

Liver regeneration after partial hepatectomy (PHx) is a time-dependent process, which is tightly regulated by multiple signaling cascades. Failure of this complex process leads to posthepatectomy liver failure (PHLF), which is associated with a high rate of mortality. Thus, it is extremely important to establish a useful biomarker of liver regeneration to help prevent PHLF. Here, we hypothesized that alterations in the plasma peptide profile may predict liver regeneration following PHx and hence we set up a diagnostic platform for monitoring posthepatectomy outcome. We chronologically analyzed plasma peptidomic profiles of 5 partially hepatectomized microminipigs using the ClinProtTM system, which consists of magnetic beads and MALDI-TOF/TOF MS. We identified endogenous circulating peptides specific to each phase of the postoperative course after PHx in pigs. Notably, peptide fragments of histones were detected immediately after PHx; the presence of these fragments may trigger liver regeneration in the very acute phase after PHx. An N-terminal fragment of hemoglobin subunit α (3627 m/z) was detected as an acute-phase-specific peptide. In the recovery phase, the short N-terminal fragments of albumin (3028, 3042 m/z) were decreased, whereas the long N-terminal fragment of the protein (8926 m/z) was increased. To further validate and extract phase-specific biomarkers using plasma peptidome after PHx, plasma specimens of 4 patients who underwent PHx were analyzed using the same method as we applied to pigs. It revealed that there was also phase-specificity in peptide profiles, one of which was represented by a fragment of complement C4b (2378 m/z). The strategy described herein is highly efficient for the identification and characterization of peptide biomarkers of liver regeneration in a swine PHx model. This strategy is feasible for application to human biomarker studies and will yield clues for understanding liver regeneration in human clinical trials.


Assuntos
Hepatectomia , Peptídeos/sangue , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Regeneração Hepática , Curva ROC , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos , Espectrometria de Massas em Tandem
20.
Am J Physiol Cell Physiol ; 311(6): C985-C995, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27834196

RESUMO

Hypoxia induces angiogenesis through the VEGF signaling pathway; however, signal propagation of VEGF in hypoxia is not fully understood. In this study, we examined alterations in VEGF signaling during hypoxia conditions and its determinant in endothelial cells. To analyze VEGF signaling during hypoxia, human umbilical vein endothelial cells (HUVECs) were exposed to 3 h of hypoxia (1% O2) followed by 3 h of reoxygenation or 12 h of hypoxia. Hypoxia induced expression of VEGF mRNA, but it was not associated with an increase in tube formation by HUVECs. During 3 h of hypoxia, VEGF-induced phosphorylation of VEGF receptor-2 (VEGFR-2) and downstream molecules were significantly inhibited without a change in VEGFR-2 expression, but it was completely restored after reoxygenation. VEGF-mediated VEGFR-2 phosphorylation is associated with a reduction in cellular ATP in hypoxia conditions (65.93 ± 8.32% of normoxia, means ± SE, P < 0.01). Interestingly, attenuation of VEGFR-2 phosphorylation was restored by addition of ATP to prepared membranes from cells that underwent 3 h of hypoxia. In contrast to 3 h of hypoxia, exposure of cells to 12 h of hypoxia decreased VEGFR-2 expression and VEGF-mediated VEGFR-2 phosphorylation. The magnitude of VEGFR-2 phosphorylation was not fully restored by addition of ATP to prepared membranes from cells exposed to 12 h of hypoxia. These data indicate that ATP is an important determinant of VEGF signaling in hypoxia and suggest that the activation process of VEGFR-2 was modified by sustained hypoxia. These observations contribute to our understanding of signal alterations in VEGF in endothelial cells during hypoxia.


Assuntos
Trifosfato de Adenosina/metabolismo , Hipóxia/metabolismo , Transdução de Sinais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neovascularização Patológica , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA