Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3349, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849815

RESUMO

The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 µm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.


Assuntos
Distrofias de Cones e Bastonetes , Tecido Nervoso , Animais , Nervo Radial , Proteômica , Estrelas-do-Mar , Equinodermos
2.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848439

RESUMO

Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.


Assuntos
Evolução Biológica , Chlorella/metabolismo , Hydra/metabolismo , Simbiose , Animais , Chlorella/efeitos dos fármacos , Chlorella/genética , Sequência Conservada , Escuridão , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Genoma , Hydra/efeitos dos fármacos , Hydra/genética , Hydra/crescimento & desenvolvimento , Anotação de Sequência Molecular , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotossíntese/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Especificidade da Espécie , Açúcares/farmacologia , Simbiose/efeitos dos fármacos , Simbiose/genética
3.
PLoS One ; 10(3): e0119406, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741697

RESUMO

The light-harvesting complex (LHC) is an essential component in light energy capture and transduction to facilitate downstream photosynthetic reactions in plant and algal chloroplasts. The unicellular dinoflagellate alga Symbiodinium is an endosymbiont of cnidarian animals, including corals and sea anemones, and provides carbohydrates generated through photosynthesis to host animals. Although Symbiodinium possesses a unique LHC gene family, called chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC), its genome-level diversity and evolutionary trajectories have not been investigated. Here, we describe a phylogenetic analysis revealing that many of the LHCs are encoded by highly duplicated genes with multi-subunit polyprotein structures in the nuclear genome of Symbiodinium minutum. This analysis provides an extended list of the LHC gene family in a single organism, including 80 loci encoding polyproteins composed of 145 LHC subunits recovered in the phylogenetic tree. In S. minutum, 5 phylogenetic groups of the Lhcf-type gene family, which is exclusively conserved in algae harboring secondary plastids of red algal origin, were identified. Moreover, 5 groups of the Lhcr-type gene family, of which members are known to be associated with PSI in red algal plastids and secondary plastids of red algal origin, were identified. Notably, members classified within a phylogenetic group of the Lhcf-type (group F1) are highly duplicated, which may explain the presence of an unusually large number of LHC genes in this species. Some gene units were homologous to other units within single loci of the polyprotein genes, whereas intergenic homologies between separate loci were conspicuous in other cases, implying that gene unit 'shuffling' by gene conversion and/or genome rearrangement might have been a driving force for diversification. These results suggest that vigorous intra- and intergenic gene duplication events have resulted in the genomic framework of photosynthesis in coral symbiont dinoflagellate algae.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Duplicação Gênica , Complexos de Proteínas Captadores de Luz/fisiologia , Simbiose , Animais , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia
4.
Nat Commun ; 5: 4784, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25216354

RESUMO

Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki.


Assuntos
Chironomidae/genética , Cromossomos de Insetos/química , Genoma de Inseto , Proteínas de Insetos/genética , Filogenia , Animais , Evolução Biológica , Chironomidae/classificação , Chironomidae/crescimento & desenvolvimento , Dessecação , Expressão Gênica , Tamanho do Genoma , Larva , Metiltransferases/genética , Análise de Sequência de DNA , Estresse Fisiológico , Tiorredoxinas/genética , Água/metabolismo
5.
Zoolog Sci ; 31(3): 129-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24601774

RESUMO

To test whether telomere length can be used in estimating the age of colonial corals, we used terminal restriction fragment (TRF) length analysis to compare the telomere lengths of the coral Acropora digitifera at three developmental stages: sperm, planula larvae, and polyps of adult colonies. We also compared the mean TRF lengths between branches at the center and periphery of tabular colonies of A. digitifera. A significant difference was observed in the mean TRF lengths in sperm, planulae, and polyps. The mean TRF length was longest in sperm and shortest in polyps from adult colonies. These results suggest that telomere length decreases during coral development and may be useful for estimating coral age. However, the mean TRF length of branches at the center of a table-form colony tended to be longer than that of peripheral branches, although this difference was not statistically significant. This suggests that both the chronological age of polyps and cell proliferation rate influence telomere length in polyps, and that estimating coral age based on telomere length is not a simple endeavor.


Assuntos
Antozoários/genética , Encurtamento do Telômero , Telômero/fisiologia , Animais , DNA , Larva/genética , Masculino , Espermatozoides
6.
Zoolog Sci ; 30(10): 826-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24125647

RESUMO

Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.


Assuntos
Genoma , Pinctada/genética , Pinctada/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica/fisiologia , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Dados de Sequência Molecular , Filogenia , Reprodução/genética , Reprodução/fisiologia
7.
Zoolog Sci ; 30(10): 877-88, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24125651

RESUMO

The pearl oyster Pinctada fucata has great potential as a model system for lophotrochozoan developmental biology research. Pinctada fucata is an important commercial resource, and a significant body of primary research on this species has emphasized its basic aquaculture biology such as larval biology and growth, aquaculture, pearl formation and quality improvement, shell formation, and biomineralization. Recently, a draft genome sequence of this species was published, and many experimental resources are currently being developed, such as bioinformatics tools, embryo and larva manipulation methods, gene knockdown technique, etc. In this paper, we report the results from our genomic survey pertaining to gene families that encode developmental signaling ligands (Fgf, Hedgehog, PDGF/VEGF, TGFß, and Wnt families). We found most of the representative genes of major signaling pathways involved in axial patterning, as well as copies of the signaling molecule paralogs. Phylogenetic character mapping was used to infer a possible evolutionary scenario of the signaling molecules in the protostomes, and to reconstruct possible copy numbers of signaling molecule-coding genes for the ancestral protostome. Our reconstruction suggests that P. fucata retains the ancestral protostome gene complement, providing further justifications for the use of this taxon as a model organism for developmental genomics research.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma , Genômica , Pinctada/genética , Pinctada/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Simulação por Computador , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Modelos Genéticos , Anotação de Sequência Molecular , Filogenia , Pinctada/embriologia , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Alinhamento de Sequência , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Biometals ; 25(5): 1037-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22811043

RESUMO

Ascidians are hyperaccumulators that have been studied in detail. Proteins and genes involved in the accumulation process have been identified, but regulation of gene expression related to vanadium accumulation remains unknown. To gain insights into the regulation of gene expression by vanadium in a genome-wide manner, we performed a comprehensive study on the effect of excess vanadium ions on a vanadium-rich ascidian, Ciona intestinalis, using a microarray. RT-PCR and enzyme activity assay were performed from the perspective of redox and accumulation of metal ions in each tissue. Glutathione metabolism-related proteins were significantly up-regulated by V(IV) treatment. Several genes involved in the transport of vanadium and protons, such as Nramp and V-ATPase, were significantly up-regulated by V(IV) treatment. We observed significant up-regulation of glutathione synthesis and degradation pathways in the intestine and branchial sac. In blood cells, expression of Ci-Vanabin4, glutathione reductase activity, glutathione levels, and vanadium concentration increased after V(IV) treatment. V(IV) treatment induced significant changes related to vanadium exclusion, seclusion, and redox pathways in the intestine and branchial sac. It also induced an enhancement of the vanadium reduction and accumulation cascade in blood cells. These differential responses in each tissue in the presence of excess vanadium ions suggest that vanadium accumulation and reduction may have regulatory functions. This is the first report on the gene regulation by the treatment of vanadium-rich ascidians with excess vanadium ions. It provided much information for the mechanism of regulation of gene expression related to vanadium accumulation.


Assuntos
Ciona intestinalis/efeitos dos fármacos , Ciona intestinalis/genética , Vanádio/farmacologia , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Ciona intestinalis/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Transporte de Íons , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual , Vanádio/farmacocinética
9.
Nature ; 476(7360): 320-3, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785439

RESUMO

Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.


Assuntos
Antozoários/genética , Antozoários/fisiologia , Mudança Climática , Genoma/genética , Animais , Antozoários/química , Antozoários/imunologia , Recifes de Corais , Cicloexilaminas , Cistationina beta-Sintase/genética , Cisteína/biossíntese , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Fósseis , Glicina/análogos & derivados , Glicina/biossíntese , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/imunologia , Simbiose/genética , Raios Ultravioleta
10.
Zoolog Sci ; 27(11): 842-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21039122

RESUMO

The adult of the ascidian Ciona intestinalis has cupular organs, i.e., putative hydrodynamic sensors, at the atrial epithelium. The cupular organ consists of support cells and sensory neurons, and it extends a gelatinous matrix, known as a cupula, toward the atrial cavity. These characteristics are shared with sensory hair cells in the vertebrate inner ear and lateral line neuromasts in fish and amphibians, which suggests an evolutionary link between the cupular organ and these vertebrate hydrodynamic sensors. In the present study, we have isolated and investigated two transposon-mediated enhancer detection lines that showed GFP expression in support cells of the cupular organs. Using the enhancer detection lines and neuron marker transgenic lines, we describe the position, morphology, and development of the cupular organs. Cupular organs were found at the atrial epithelium, but not in the branchial epithelium. We found that cupular organs are also present along the dorsal fold and the gonoducts. The cells lining the pre-atrial opening in juveniles are presumably precursor cells of the cupular organ. To our knowledge, the present study is the first precise description of the ascidian cupular organ, providing evidence that may help to resolve discrepancies among previous studies on the organ.


Assuntos
Ciona intestinalis/crescimento & desenvolvimento , Ciona intestinalis/fisiologia , Elementos de DNA Transponíveis/fisiologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/fisiologia , Animais , Ciona intestinalis/anatomia & histologia , Ciona intestinalis/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde , Organismos Geneticamente Modificados , Pressão
11.
Gene ; 429(1-2): 49-58, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18977283

RESUMO

The Ras family small GTPases play a variety of essential roles in eukaryotes. Among them, classical Ras (H-Ras, K-Ras, and N-Ras) and its orthologues are conserved from yeast to human. In ascidians, which phylogenetically exist between invertebrates and vertebrates, the fibroblast growth factor (FGF)-Ras-MAP kinase signaling is required for the induction of neural system, notochord, and mesenchyme. Analyses of DNA databases revealed that no gene encoding classical Ras is present in the ascidians, Ciona intestinalis and Halocynthia roretzi, despite the presence of classical Ras-orthologous genes in nematode, fly, amphioxus, and fish. By contrast, both the ascidians contain single genes orthologous to Mras, Rras, Ral, Rap1, and Rap2. A single Mras orthologue exists from nematode to mammalian. Thus, Mras evolved in metazoans independently of other Ras family genes such as Rras. Whole-mount in situ hybridization showed that C. intestinalis Mras orthologue (Ci-Mras) was expressed in the neural complex of the ascidian juveniles after metamorphosis. Knockdown of Ci-Mras with morpholino antisense oligonucleotides in the embryos and larvae resulted in undeveloped tails and neuronal pigment cells, abrogation of the notochord marker brachyury expression, and perturbation of the neural marker Otx expression, as has been shown in the experiments of the FGF-Ras-MAP kinase signaling inhibition. Mammalian Ras and M-Ras mediate nerve growth factor-induced neuronal differentiation in rat PC12 cells by activating the ERK/MAP kinase pathway transiently and sustainedly, respectively. Activated Ci-M-Ras bound to target proteins of mammalian M-Ras and Ras. Exogenous expression of an activated Ci-M-Ras in PC12 cells caused ERK activation and induced neuritogenesis via the ERK pathway as do mammalian M-Ras and Ras. These results suggest that the ascidian M-Ras orthologue compensates for lacked classical Ras and plays essential roles in neurogenesis in the ascidian.


Assuntos
Evolução Molecular , Mamíferos/metabolismo , Sistema Nervoso/enzimologia , Urocordados/enzimologia , Proteínas ras/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular , Ciona intestinalis/embriologia , Ciona intestinalis/enzimologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/enzimologia , Notocorda/enzimologia , Células PC12 , Filogenia , Ratos , Proteínas ras/química
12.
Zoolog Sci ; 23(8): 679-87, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16971786

RESUMO

We previously identified a 66 kDa axonemal protein (Ci-Axp66.0) in sperm of the ascidian Ciona intestinalis. Here we found that Ci-Axp66.0 shows sequence similarity to the DC2 subunit of the Chlamydomonas outer arm docking complex. Analysis of secondary structure of Ci-Axp66.0 suggested that the N-terminal two-thirds of the molecule is rich in coiled coil structure, as in Chlamydomonas DC2. Immunogold localization revealed that it is located in the vicinity of outer arm dynein. Ci-Axp66.0 was partly extracted from the axonemes by a high salt solution and co-purified with outer arm dynein. This co-purification was not affected by the absence of Mg(2+) in isolation buffer, indicating that Ci-Axp66.0 is associated with outer arm dynein. These results suggest that Ci-Axp66.0 is a component of the outer arm dynein docking complex in the axonemes of Ciona sperm.


Assuntos
Ciona intestinalis/química , Dineínas/análise , Proteínas de Protozoários/metabolismo , Cauda do Espermatozoide/química , Espermatozoides/enzimologia , Sequência de Aminoácidos , Animais , Chlamydomonas/metabolismo , Masculino , Dados de Sequência Molecular , Peso Molecular , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Motilidade dos Espermatozoides
13.
DNA Res ; 13(1): 25-35, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16766510

RESUMO

The innate immunity of ascidian hemocytes is considered to be a prototype of that in vertebrates. In this study, we identified as many transcripts as possible that were expressed specifically in hemocytes of Ciona intestinalis, a ubiquitous species of ascidian. Using a large-scale whole-mount in situ hybridization (WISH) technique and young adult specimens of C. intestinalis, 34 such transcripts were identified. Three of these appeared to encode immunity-related polypeptides, whereas 23 encoded hypothetical and/or new genes. Interestingly, different sets of transcripts appeared to be expressed in different subsets of hemocytes, as revealed by double-colored WISH. The 34 genes were categorized into two major subgroups based on their expression patterns during the C. intestinalis life cycle. Based on the gene expression profiles, we speculate that C. intestinalis hemocytes may exert more pleiotropic effects in immunity than previously believed.


Assuntos
Ciona intestinalis/metabolismo , Hemócitos/metabolismo , Animais , Ciona intestinalis/genética , Ciona intestinalis/crescimento & desenvolvimento , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Genes , Imunidade Inata/genética , Hibridização In Situ , Estágios do Ciclo de Vida , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética
14.
J Biol Chem ; 279(51): 53798-805, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15485888

RESUMO

Tachykinins (TKs) are the most prevalent vertebrate brain/gut peptides. In this study, we originally identified authentic TKs and their receptor from a protochordate, Ciona intestinalis. The Ciona TK (Ci-TK) precursor, like mammalian gamma-preprotachykinin A (gamma-PPTA), encodes two TKs, Ci-TK-I and -II, including the -FXGLM-NH(2) vertebrate TK consensus. Mass spectrometry of the neural extract revealed the production of both Ci-TKs. Ci-TK-I contains several Substance P (SP)-typical amino acids, whereas a Thr is exceptionally located at position 4 from the C terminus of Ci-TK-II. The Ci-TK gene encodes both Ci-TKs in the same exon, indicating no alternative generation of Ci-TKs, unlike the PPTA gene. These results suggested that the alternative splicing of the PPTA gene was established during evolution of vertebrates. The only Ci-TK receptor, Ci-TK-R, was equivalently activated by Ci-TK-I, SP, and neurokinin A at physiological concentrations, whereas Ci-TK-II showed 100-fold less potent activity, indicating that the ligand selectivity of Ci-TK-R is distinct from those of vertebrate TK receptors. Ci-TK-I, like SP, also elicited the typical contraction on the guinea pig ileum. The Ci-TK gene was expressed in neurons of the brain ganglion, small cells in the intestine, and the zone 7 in the endostyle, which corresponds to the vertebrate thyroid gland. Furthermore, the Ci-TK-R mRNA was distributed in these three tissues plus the gonad. These results showed that Ci-TKs play major roles in sexual behavior and feeding in protochordates as brain/gut peptides and endocrine/paracrine molecules. Taken together, our data revealed the biochemical and structural origins of vertebrate TKs and their receptors.


Assuntos
Ciona intestinalis/genética , Receptores de Taquicininas/genética , Taquicininas/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Southern Blotting , Encéfalo/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Éxons , Gânglios/patologia , Cobaias , Íleo/metabolismo , Hibridização In Situ , Mucosa Intestinal/metabolismo , Íons , Ligantes , Espectrometria de Massas , Dados de Sequência Molecular , Neurocinina A/metabolismo , Oócitos/metabolismo , Peptídeos/química , Reação em Cadeia da Polimerase , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Receptores de Taquicininas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Taquicininas/fisiologia , Glândula Tireoide/metabolismo , Xenopus
15.
Trends Genet ; 20(8): 359-66, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15262408

RESUMO

One of the great challenges in biology is to understand how particular complex morphological and physiological characters originated in specific evolutionary lineages. In this article, we address the origin of the vertebrate hypothalamic-pituitary-peripheral gland (H-P-PG) endocrine system, a complex network of specialized tissues, ligands and receptors. Analysis of metazoan nucleotide and protein sequences reveals a patchwork pattern of H-P-PG gene conservation between vertebrates and closely related invertebrates (ascidians). This is consistent with a model of how the vertebrate H-P-PG endocrine system could have emerged in relatively few steps by gene family expansion and by regulatory and structural modifications to genes that are present in a chordate ancestor. Some of these changes might have resulted in new connections between metabolic or signaling pathways, such as the bridging of 'synthesis islands' to form an efficient system for steroid hormone synthesis.


Assuntos
Evolução Biológica , Sistema Endócrino/metabolismo , Invertebrados/genética , Filogenia , Vertebrados/genética , Animais , Antozoários/genética , Artrópodes/genética , Ciona intestinalis/genética , Sequência Conservada/genética , Hipotálamo/metabolismo , Modelos Genéticos , Adeno-Hipófise/metabolismo , Homologia de Sequência
16.
DNA Res ; 10(5): 203-12, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-14686582

RESUMO

Ascidian is a useful experimental animal for studying body planning principles and host defense mechanisms employed by the phylum chordata. Toward this goal, genome and cDNA/EST projects of Ciona intestinalis have been undertaken. Using cDNAs and ESTs derived from Ciona hemocytes, we identified 79 possible hemocyte-preferential transcripts and determined the cDNA sequence of each clone. The amino acid sequence of each encoded polypeptide was predicted as well. Among these cDNAs, we identified three transcripts that may be involved in characteristic cell-cell communication in Ciona. These transcripts encoded leucine-rich repeat-containing RP105-like, IL-17 receptor/similar expression to FGF-like, and ectodysplasin-like polypeptide of the tunmr necrosis factor famlly, and they are expressed abundantly in hemocytes.


Assuntos
Comunicação Celular , Ciona intestinalis/genética , Hemócitos/metabolismo , RNA Mensageiro/genética , Animais , DNA Complementar , Etiquetas de Sequências Expressas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Dev Genes Evol ; 213(5-6): 264-72, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12739142

RESUMO

Cell-cell interactions play important roles in a variety of developmental processes, and therefore molecules involved in the signaling pathways have been studied extensively. Recently, the draft genome sequence of the basal chordate, Ciona intestinalis, was determined. Here we annotated genes for the signaling pathways of Wnt, transforming growth factor beta (TGFbeta), Hedgehog, and JAK/STAT in the genome of Ciona intestinalis. The Ciona genome contains ten wnt genes, six frizzled genes, four sFRP genes, ten TGFbeta family member genes, five TGFbeta-receptor genes, and five Smad genes; most of the genes were found with less redundancy than in vertebrate genomes. The other genes in the signaling pathways are present as a single copy in the Ciona genome. In addition, all of the identified genes for the signaling pathway, except for a few genes, have EST evidence, and their cDNAs are available from the Ciona intestinalis gene collection. Therefore, Ciona intestinalis may provide an experimental system for exploring the basic genetic cascade associated with the signaling pathways in chordates.


Assuntos
Ciona intestinalis/genética , Genoma , Proteínas Hedgehog/genética , Filogenia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Proteínas de Peixe-Zebra , Animais , Ciona intestinalis/embriologia , Análise por Conglomerados , Bases de Dados Genéticas , Proteínas Wnt
18.
Zoolog Sci ; 19(1): 57-66, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12025405

RESUMO

We have identified and characterized the sequence and expression of two Group B Sox genes in the acorn worm, Ptychodera flava. One sequence represents a Group B1 Sox gene and is designated Pf-SoxB1; the other is a Group B2 Sox gene and is designated Pf-SoxB2. Both genes encode polypeptides with an HMG domain in the N-terminal half. Whole-mount in situ hybridization to embryonic and larval stages of P. flava shows that the two genes are expressed in rather similar patterns at these stages. Expression is first detected in the cells of the blastula and subsequently localizes to the ectoderm during gastrulation. As the mouth forms, expression becomes concentrated in the stomodeum region. During morphogenesis of the tornaria larva, expression in the stomodeal ectoderm remains prominent around the mouth and under the oral hood. Later the genes are prominently upregulated in the ciliary bands and the apical organ. These results provide additional evidence that genes playing essential roles in the formation of the chordate dorsal central nervous system function in the development of the ciliary bands and apical organ, neural structures of this non-chordate deuterostome larva.


Assuntos
Cordados não Vertebrados/crescimento & desenvolvimento , Cordados não Vertebrados/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Larva/anatomia & histologia , Larva/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Padronização Corporal , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/crescimento & desenvolvimento , Cordados não Vertebrados/anatomia & histologia , Clonagem Molecular , Domínios HMG-Box , Proteínas de Grupo de Alta Mobilidade/química , Hibridização In Situ , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
19.
Development ; 129(7): 1729-38, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11923208

RESUMO

In early Ciona savignyi embryos, nuclear localization of beta-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of beta-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of beta-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in beta-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Proteínas Proto-Oncogênicas/genética , Transativadores , Urocordados/embriologia , Urocordados/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/genética , Indução Embrionária/genética , Fator 4 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Dados de Sequência Molecular , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Notocorda/embriologia , Notocorda/metabolismo , RNA Antissenso/genética , RNA Antissenso/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , Homologia de Sequência de Aminoácidos , Urocordados/citologia , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA