Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 594(24): 4370-4380, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978791

RESUMO

Insulin stimulates glucose uptake via the translocation of the glucose transporter GLUT4 to the plasma membrane in adipocytes. Several lines of evidence suggest that the small GTPase Rac1 plays an important role in insulin-stimulated glucose uptake in skeletal muscle and adipocytes. The purpose of this study is to investigate the mechanisms whereby Rac1 is regulated in adipocyte insulin signaling. Here, we show that knockdown of the guanine nucleotide exchange factor FLJ00068 inhibits Rac1 activation and GLUT4 translocation by insulin and a constitutively activated form of the protein kinase Akt2. Furthermore, constitutively activated FLJ00068 induced Rac1 activation and Rac1-dependent GLUT4 translocation. Collectively, these results suggest the involvement of FLJ00068 downstream of Akt2 in insulin-stimulated glucose uptake signaling in adipocytes.


Assuntos
Adipócitos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insulina/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Animais , Ativação Enzimática , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683681

RESUMO

Insulin-stimulated glucose uptake is mediated by translocation of the glucose transporter GLUT4 to the plasma membrane in adipocytes and skeletal muscle cells. In both types of cells, phosphoinositide 3-kinase and the protein kinase Akt2 have been implicated as critical regulators. In skeletal muscle, the small GTPase Rac1 plays an important role downstream of Akt2 in the regulation of insulin-stimulated glucose uptake. However, the role for Rac1 in adipocytes remains controversial. Here, we show that Rac1 is required for insulin-dependent GLUT4 translocation also in adipocytes. A Rac1-specific inhibitor almost completely suppressed GLUT4 translocation induced by insulin or a constitutively activated mutant of phosphoinositide 3-kinase or Akt2. Constitutively activated Rac1 also enhanced GLUT4 translocation. Insulin-induced, but not constitutively activated Rac1-induced, GLUT4 translocation was abrogated by inhibition of phosphoinositide 3-kinase or Akt2. On the other hand, constitutively activated Akt2 caused Rac1 activation, and insulin-induced Rac1 activation was suppressed by an Akt2-specific inhibitor. Moreover, GLUT4 translocation induced by a constitutively activated mutant of Akt2 or Rac1 was diminished by knockdown of another small GTPase RalA. RalA was activated by a constitutively activated mutant of Akt2 or Rac1, and insulin-induced RalA activation was suppressed by an Akt2- or Rac1-specific inhibitor. Collectively, these results suggest that Rac1 plays an important role in the regulation of insulin-dependent GLUT4 translocation downstream of Akt2, leading to RalA activation in adipocytes.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Camundongos , Microscopia de Fluorescência , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Proteínas rac1 de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo
3.
PLoS One ; 14(2): e0212219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735546

RESUMO

Translocation of the glucose transporter GLUT4 to the sarcolemma accounts for glucose uptake in skeletal muscle following insulin administration. The protein kinase Akt2 and the small GTPase Rac1 have been implicated as essential regulators of insulin-stimulated GLUT4 translocation. Several lines of evidence suggest that Rac1 is modulated downstream of Akt2, and indeed the guanine nucleotide exchange factor FLJ00068 has been identified as an activator of Rac1. On the other hand, the mechanisms whereby Akt2 and Rac1 are regulated in parallel downstream of phosphoinositide 3-kinase are also proposed. Herein, we aimed to provide additional evidence that support a critical role for Akt2 in insulin regulation of Rac1 in mouse skeletal muscle. Knockdown of Akt2 by RNA interference abolished Rac1 activation following intravenous administration of insulin or ectopic expression of a constitutively activated phosphoinositide 3-kinase mutant. The activation of another small GTPase RalA and GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated form of phosphoinositide 3-kinase, but not Rac1, were also diminished by downregulation of Akt2 expression. Collectively, these results strongly support the notion that Rac1 acts downstream of Akt2 leading to the activation of RalA and GLUT4 translocation to the sarcolemma in skeletal muscle.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/biossíntese , Sarcolema/enzimologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos , Mutação , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Sarcolema/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo
4.
Cell Signal ; 39: 108-117, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28821441

RESUMO

Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action.


Assuntos
Adipócitos/efeitos dos fármacos , Insulina/farmacologia , Microscopia de Fluorescência/métodos , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Tecido Adiposo Branco/enzimologia , Animais , Ativação Enzimática , Epitopos/metabolismo , Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/genética
5.
PLoS One ; 11(5): e0155292, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27163697

RESUMO

Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Fracionamento Celular , Linhagem Celular , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Mioblastos/citologia , Neuropeptídeos/genética , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Proteínas rac1 de Ligação ao GTP/genética
6.
Anal Biochem ; 476: 5-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25277816

RESUMO

The small GTPase Rac1 acts as a molecular switch of intracellular signaling in mammals. For understanding the regulatory mechanism, it is important to identify subcellular locations in which Rac1 is activated following multiple extracellular stimuli. However, it is difficult to detect Rac1 activation in situ in animal tissues, and thus a novel method is highly desirable. Here, we report a simple method to visualize the activation of endogenous Rac1 in mouse skeletal muscle fibers. In this assay, specific interaction between activated Rac1 and a binding polypeptide is detected by immunofluorescent microscopy. This approach is readily applicable to other small GTPases.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Músculo Esquelético/enzimologia , Animais , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Cell Signal ; 26(11): 2460-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25025572

RESUMO

The small GTPase Rac1 plays a key role in insulin-promoted glucose uptake mediated by the GLUT4 glucose transporter in skeletal muscle. Our recent studies have demonstrated that the serine/threonine protein kinase Akt2 is critically involved in insulin-dependent Rac1 activation. The purpose of this study is to clarify the role of the guanine nucleotide exchange factor FLJ00068 in Akt2-mediated Rac1 activation and GLUT4 translocation in mouse skeletal muscle and cultured myocytes. Constitutively activated FLJ00068 induced GLUT4 translocation in a Rac1-dependent and Akt2-independent manner in L6 myocytes. On the other hand, knockdown of FLJ00068 significantly reduced constitutively activated Akt2-triggered GLUT4 translocation. Furthermore, Rac1 activation and GLUT4 translocation induced by constitutively activated phosphoinositide 3-kinase were inhibited by knockdown of FLJ00068. In mouse gastrocnemius muscle, constitutively activated FLJ00068 actually induced GLUT4 translocation to the sarcolemma. GLUT4 translocation by constitutively activated FLJ00068 was totally abolished in rac1 knockout mouse gastrocnemius muscle. Additionally, we were successful in detecting the activation of Rac1 following the expression of constitutively activated FLJ00068 in gastrocnemius muscle by immunofluorescence microscopy using an activation-specific probe. Collectively, these results strongly support the notion that FLJ00068 regulates Rac1 downstream of Akt2, leading to the stimulation of glucose uptake in skeletal muscle.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcolema/metabolismo , Espectrina/metabolismo , Animais , Linhagem Celular , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Sarcolema/genética , Espectrina/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Small GTPases ; 5: e28102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24613967

RESUMO

Insulin is secreted into blood vessels from ß cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Transportador de Glucose Tipo 4/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
FEBS J ; 281(5): 1493-1504, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24438685

RESUMO

Insulin promotes glucose uptake in skeletal muscle by inducing the translocation of the glucose transporter GLUT4 to the plasma membrane. The serine/threonine kinase Akt2 has been implicated as a key regulator of this insulin action. However, the mechanisms whereby Akt2 regulates multiple steps of GLUT4 translocation remain incompletely understood. Recently, the small GTPase Rac1 has been identified as a skeletal muscle-specific regulator of insulin-stimulated glucose uptake. Here, we show that Rac1 is a critical downstream component of the Akt2 pathway in mouse skeletal muscle as well as cultured myocytes. GLUT4 translocation induced by constitutively activated Akt2 was totally dependent on the expression of Rac1 in L6 myocytes. Moreover, we observed the activation of Rac1 when constitutively activated Akt2 was ectopically expressed. Constitutively activated Akt2-triggered Rac1 activation was diminished by knockdown of FLJ00068, a guanine nucleotide exchange factor for Rac1. Knockdown of Akt2, on the other hand, markedly reduced Rac1 activation by a constitutively activated mutant of phosphoinositide 3-kinase. In mouse skeletal muscle, constitutively activated mutants of Akt2 and phosphoinositide 3-kinase, when ectopically expressed, induced GLUT4 translocation. Muscle-specific rac1 knockout markedly diminished Akt2- or phosphoinositide 3-kinase-induced GLUT4 translocation, highlighting a crucial role of Rac1 downstream of Akt2. Taken together, these results strongly suggest a novel regulatory link between Akt2 and Rac1 in insulin-dependent signal transduction leading to glucose uptake in skeletal muscle.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Músculo Esquelético/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP/genética
10.
Cell Signal ; 25(6): 1361-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499910

RESUMO

The small GTPase Rac1 plays a pivotal role in insulin-stimulated glucose uptake in skeletal muscle, which is mediated by GLUT4 translocation to the plasma membrane. However, regulatory mechanisms for Rac1 and its role in the signaling pathway composed of phosphoinositide 3-kinase and the serine/threonine kinase Akt remain obscure. Here, we investigate the role of Akt in the regulation of Rac1 in myocytes. Insulin-induced, but not constitutively activated Rac1-induced, GLUT4 translocation was suppressed by Akt inhibitor IV. Insulin-induced Rac1 activation, on the other hand, was completely inhibited by this inhibitor. Constitutively activated phosphoinositide 3-kinase induced Rac1 activation and GLUT4 translocation. This GLUT4 translocation was almost completely suppressed by Rac1 knockdown. Furthermore, constitutively activated phosphoinositide 3-kinase-induced, but not constitutively activated Rac1-induced, GLUT4 translocation was suppressed by Akt2 knockdown. Finally, insulin-induced Rac1 activation was indeed inhibited by Akt2 knockdown. Together, these results reveal a novel regulatory mechanism involving Akt2 for insulin-dependent Rac1 activation.


Assuntos
Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética
11.
BMC Cell Biol ; 10: 56, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19635168

RESUMO

BACKGROUND: The Dbl family guanine nucleotide exchange factor ARHGEF10 was originally identified as the product of the gene associated with slowed nerve-conduction velocities of peripheral nerves. However, the function of ARHGEF10 in mammalian cells is totally unknown at a molecular level. ARHGEF10 contains no distinctive functional domains except for tandem Dbl homology-pleckstrin homology and putative transmembrane domains. RESULTS: Here we show that RhoA is a substrate for ARHGEF10. In both G1/S and M phases, ARHGEF10 was localized in the centrosome in adenocarcinoma HeLa cells. Furthermore, RNA interference-based knockdown of ARHGEF10 resulted in multipolar spindle formation in M phase. Each spindle pole seems to contain a centrosome consisting of two centrioles and the pericentriolar material. Downregulation of RhoA elicited similar phenotypes, and aberrant mitotic spindle formation following ARHGEF10 knockdown was rescued by ectopic expression of constitutively activated RhoA. Multinucleated cells were not increased upon ARHGEF10 knockdown in contrast to treatment with Y-27632, a specific pharmacological inhibitor for the RhoA effector kinase ROCK, which induced not only multipolar spindle formation, but also multinucleation. Therefore, unregulated centrosome duplication rather than aberration in cytokinesis may be responsible for ARHGEF10 knockdown-dependent multipolar spindle formation. We further isolated the kinesin-like motor protein KIF3B as a binding partner of ARHGEF10. Knockdown of KIF3B again caused multipolar spindle phenotypes. The supernumerary centrosome phenotype was also observed in S phase-arrested osteosarcoma U2OS cells when the expression of ARHGEF10, RhoA or KIF3B was abrogated by RNA interference. CONCLUSION: Collectively, our results suggest that a novel RhoA-dependent signaling pathway under the control of ARHGEF10 has a pivotal role in the regulation of the cell division cycle. This pathway is not involved in the regulation of cytokinesis, but instead may regulate centrosome duplication. The kinesin-like motor protein KIF3B may modulate the ARHGEF10-RhoA pathway through the binding to ARHGEF10.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fuso Acromático/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Centrossomo/metabolismo , Citocinese , Regulação para Baixo , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Fatores de Troca de Nucleotídeo Guanina Rho , Proteína rhoA de Ligação ao GTP/genética
12.
Biol Cell ; 100(11): 645-57, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18482007

RESUMO

BACKGROUND INFORMATION: Insulin-stimulated glucose uptake into skeletal muscle is crucial for glucose homoeostasis, and depends on the recruitment of GLUT4 (glucose transporter 4) to the plasma membrane. Mechanisms underlying insulin-dependent GLUT4 translocation, particularly the role of Rho family GTPases, remain controversial. RESULTS: In the present study, we show that constitutively active Rac1, but not other Rho family GTPases tested, induced GLUT4 translocation in the absence of insulin, suggesting that Rac1 activation is sufficient for GLUT4 translocation in muscle cells. Rac1 activation occurred in dorsal membrane ruffles of insulin-stimulated cells as revealed by a novel method to visualize activated Rac1 in situ. We further identified FLJ00068 as a GEF (guanine-nucleotide-exchange factor) responsible for this Rac1 activation. Indeed, constitutively active FLJ00068 caused Rac1 activation in dorsal membrane ruffles and GLUT4 translocation without insulin stimulation. Down-regulation of Rac1 or FLJ00068 by RNA interference, on the other hand, abrogated insulin-induced GLUT4 translocation. Basal, but not insulin-stimulated, activity of the serine/threonine kinase Akt was required for the induction of GLUT4 translocation by constitutively active Rac1 or FLJ00068. CONCLUSION: Collectively, Rac1 activation specifically in membrane ruffles by the GEF FLJ00068 is sufficient for insulin induction of glucose uptake into skeletal-muscle cells.


Assuntos
Glucose/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Ativação Enzimática , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Insulina/metabolismo , Mioblastos/metabolismo , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Transporte Proteico , Ratos , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
13.
Proc Natl Acad Sci U S A ; 104(49): 19333-8, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18040047

RESUMO

cAMP is well known to regulate exocytosis in various secretory cells, but the precise mechanism of its action remains unknown. Here, we examine the role of cAMP signaling in the exocytotic process of insulin granules in pancreatic beta cells. Although activation of cAMP signaling alone does not cause fusion of the granules to the plasma membrane, it clearly potentiates both the first phase (a prompt, marked, and transient increase) and the second phase (a moderate and sustained increase) of glucose-induced fusion events. Interestingly, all granules responsible for this potentiation are newly recruited and immediately fused to the plasma membrane without docking (restless newcomer). Importantly, cAMP-potentiated fusion events in the first phase of glucose-induced exocytosis are markedly reduced in mice lacking the cAMP-binding protein Epac2 (Epac2(ko/ko)). In addition, the small GTPase Rap1, which is activated by cAMP specifically through Epac2 in pancreatic beta cells, mediates cAMP-induced insulin secretion in a protein kinase A-independent manner. We also have developed a simulation model of insulin granule movement in which potentiation of the first phase is associated with an increase in the insulin granule density near the plasma membrane. Taken together, these data indicate that Epac2/Rap1 signaling is essential in regulation of insulin granule dynamics by cAMP, most likely by controlling granule density near the plasma membrane.


Assuntos
Proteínas de Transporte/fisiologia , AMP Cíclico/fisiologia , Grânulos Citoplasmáticos/metabolismo , Exocitose , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Insulina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Glucose/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Insulina/análise , Secreção de Insulina , Camundongos , Camundongos Knockout , Potássio/farmacologia , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/análise
14.
Mol Biol Cell ; 18(8): 2949-59, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17538012

RESUMO

The Rap1 small GTPase has been implicated in regulation of integrin-mediated leukocyte adhesion downstream of various chemokines and cytokines in many aspects of inflammatory and immune responses. However, the mechanism for Rap1 regulation in the adhesion signaling remains unclear. RA-GEF-2 is a member of the multiple-member family of guanine nucleotide exchange factors (GEFs) for Rap1 and characterized by the possession of a Ras/Rap1-associating domain, interacting with M-Ras-GTP as an effector, in addition to the GEF catalytic domain. Here, we show that RA-GEF-2 is specifically responsible for the activation of Rap1 that mediates tumor necrosis factor-alpha (TNF-alpha)-triggered integrin activation. In BAF3 hematopoietic cells, activated M-Ras potently induced lymphocyte function-associated antigen 1 (LFA-1)-mediated cell aggregation. This activation was totally abrogated by knockdown of RA-GEF-2 or Rap1. TNF-alpha treatment activated LFA-1 in a manner dependent on M-Ras, RA-GEF-2, and Rap1 and induced activation of M-Ras and Rap1 in the plasma membrane, which was accompanied by recruitment of RA-GEF-2. Finally, we demonstrated that M-Ras and RA-GEF-2 were indeed involved in TNF-alpha-stimulated and Rap1-mediated LFA-1 activation in splenocytes by using mice deficient in RA-GEF-2. These findings proved a crucial role of the cross-talk between two Ras-family GTPases M-Ras and Rap1, mediated by RA-GEF-2, in adhesion signaling.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrinas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Baço/citologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Marcação de Genes , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Modelos Biológicos , Baço/efeitos dos fármacos
15.
Methods Enzymol ; 407: 99-107, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16757317

RESUMO

Phosphoinositide-specific phospholipase C (PLC) plays a pivotal role in signal transduction from various receptor molecules on the plasma membrane. PLCepsilon is characterized by possession of two Ras/Rap-associating (RA) domains and a CDC25 homology domain acting as a guanine nucleotide exchange factor for Rap1. Our recent studies using PLCepsilon-deficient mice have suggested that PLCepsilon plays crucial roles in cardiac semilunar valvulogenesis downstream of the EGF receptor, as well as in chemical carcinogen-induced skin tumor development downstream of Ha-Ras. Stimulation of cultured mammalian cells with growth factors induces translocation of PLCepsilon from the cytoplasm to the plasma membrane and to the Golgi apparatus through direct association at its RA domains with the GTP-bound forms of Ras and Rap1, respectively. These results suggest that growth factor stimulation activates PLCepsilon by means of Ras and/or Rap1. However, growth factor-induced activation of the PLCepsilon lipase activity cannot be measured accurately because of simultaneous activation of PLCgamma through receptor-dependent phosphorylation. In this article, we introduce two methods to assay Ras- or Rap1-dependent activation of PLCepsilon lipase activity, with special emphasis on the use of cells expressing a mutant platelet-derived growth factor receptor lacking the PLCgamma-binding sites.


Assuntos
Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática , Proteínas Ativadoras de GTPase/genética , Genes ras/genética , Humanos , Fosfatos de Inositol/metabolismo , Proteínas Nucleares , Fosfoinositídeo Fosfolipase C/análise , Fator de Crescimento Derivado de Plaquetas/fisiologia , Ensaio Radioligante , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Transfecção
16.
Methods Enzymol ; 407: 281-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16757332

RESUMO

Phospholipase C (PLC) epsilon is directly regulated by Ras and Rap1 small GTPases: Ras and Rap1, in their GTP-bound form, interact with the Ras/Rap1-associationg (RA) domain of PLCepsilon, thereby translocating PLCepsilon to the plasma membrane and the Golgi apparatus, respectively. In the plasma membrane and the Golgi apparatus, PLCepsilon acts as a phosphoinositide-specific PLC, regulating various downstream signaling pathways. PLCepsilon also contains a CDC25 homology domain, which enhances guanine nucleotide exchange on Rap1. Here, we describe biochemical characterization of the CDC25 homology domain of PLCepsilon and provide insights into its physiological role in the regulation of PLCepsilon activity.


Assuntos
Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , ras-GRF1/metabolismo , Animais , Células COS , Chlorocebus aethiops , Guanosina Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Transporte Proteico , Spodoptera
17.
Mol Cancer Res ; 3(5): 297-305, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15886301

RESUMO

Activated Cdc42-associated kinase (ACK) has been shown to be an important effector molecule for the small GTPase Cdc42. We have shown previously an essential role for Cdc42 in the transduction of Ras signals for the transformation of mammalian cells. In this report, we show that the ACK-1 isoform of ACK plays a critical role in transducing Ras-Cdc42 signals in the NIH 3T3 cells. Overexpression of a dominant-negative (K214R) mutant of ACK-1 inhibits Ras-induced up-regulation of c-fos and inhibits the growth of v-Ras-transformed NIH 3T3 cells. Using small interfering RNA, we knocked down the expression of ACK-1 in both v-Ha-Ras-transformed and parental NIH 3T3 cells and found that down-regulation of ACK-1 inhibited cell growth by inducing apoptosis only in v-Ha-Ras-transformed but not parental NIH 3T3 cells. In addition, we studied the effect of several tyrosine kinase inhibitors and found that PD158780 inhibits the kinase activity of ACK-1 in vitro. We also found that PD158780 inhibits the growth of v-Ha-Ras-transformed NIH 3T3 cells. Taken together, our results suggest that ACK-1 kinase plays an important role in the survival of v-Ha-Ras-transformed cells, suggesting that ACK-1 is a novel target for therapies directed at Ras-induced cancer.


Assuntos
Proteína Oncogênica p21(ras)/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Sobrevivência Celular , Regulação para Baixo , Camundongos , Células NIH 3T3 , Proteína Oncogênica p21(ras)/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , RNA Interferente Pequeno
18.
Mol Cell Biol ; 25(6): 2191-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743817

RESUMO

Phospholipase Cepsilon is a novel class of phosphoinositide-specific phospholipase C, identified as a downstream effector of Ras and Rap small GTPases. We report here the first genetic analysis of its physiological function with mice whose phospholipase Cepsilon is catalytically inactivated by gene targeting. The hearts of mice homozygous for the targeted allele develop congenital malformations of both the aortic and pulmonary valves, which cause a moderate to severe degree of regurgitation with mild stenosis and result in ventricular dilation. The malformation involves marked thickening of the valve leaflets, which seems to be caused by a defect in valve remodeling at the late stages of semilunar valvulogenesis. This phenotype has a remarkable resemblance to that of mice carrying an attenuated epidermal growth factor receptor or deficient in heparin-binding epidermal growth factor-like growth factor. Smad1/5/8, which is implicated in proliferation of the valve cells downstream of bone morphogenetic protein, shows aberrant activation at the margin of the developing semilunar valve tissues in embryos deficient in phospholipase Cepsilon. These results suggest a crucial role of phospholipase Cepsilon downstream of the epidermal growth factor receptor in controlling semilunar valvulogenesis through inhibition of bone morphogenetic protein signaling.


Assuntos
Valva Aórtica/anormalidades , Valva Aórtica/embriologia , Valva Pulmonar/anormalidades , Valva Pulmonar/embriologia , Fosfolipases Tipo C/fisiologia , Alelos , Animais , Valva Aórtica/imunologia , Defeito do Septo Aortopulmonar/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Cardiomiopatia Dilatada/etiologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/deficiência , Receptores ErbB/genética , Receptores ErbB/fisiologia , Marcação de Genes , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/genética , Ventrículos do Coração/patologia , Camundongos , Camundongos Mutantes , Mutação/genética , Fosfoinositídeo Fosfolipase C , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Valva Pulmonar/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Smad , Proteína Smad1 , Proteína Smad5 , Proteína Smad8 , Transativadores/análise , Transativadores/genética , Transativadores/metabolismo , Fosfolipases Tipo C/análise , Fosfolipases Tipo C/genética
19.
Cancer Res ; 64(24): 8808-10, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15604236

RESUMO

Mutational activation of the ras proto-oncogenes is frequently found in skin cancers. However, the nature of downstream signaling pathways from Ras involved in skin carcinogenesis remains poorly understood. Recently, we and others identified phospholipase C (PLC) epsilon as an effector of Ras. Here we have examined the role of PLCepsilon in de novo skin chemical carcinogenesis by using mice whose PLCepsilon is genetically inactivated. PLCepsilon(-/-) mice exhibit delayed onset and markedly reduced incidence of skin squamous tumors induced by initiation with 7,12-dimethylbenz(a)anthracene followed by promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA). Furthermore, the papillomas formed in PLCepsilon(-/-) mice fail to undergo malignant progression into carcinomas, in contrast to a malignant conversion rate of approximately 20% observed with papillomas in PLCepsilon(+/+) mice. In all of the tumors analyzed, the Ha-ras gene is mutationally activated irrespective of the PLCepsilon background. The skin of PLCepsilon(-/-) mice fails to exhibit basal layer cell proliferation and epidermal hyperplasia in response to TPA treatment. These results indicate a crucial role of PLCepsilon in ras oncogene-induced de novo carcinogenesis and downstream signaling from TPA, introducing PLCepsilon as a candidate molecular target for the development of anticancer drugs.


Assuntos
Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/enzimologia , Fosfolipases Tipo C/fisiologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinógenos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosfoinositídeo Fosfolipase C , RNA/análise , RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Acetato de Tetradecanoilforbol , Fosfolipases Tipo C/biossíntese , Fosfolipases Tipo C/deficiência , Fosfolipases Tipo C/genética , Proteínas ras/genética
20.
Cell Signal ; 16(8): 899-906, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15157669

RESUMO

Mechanisms underlying subcellular region-specific regulation of Rho family GTPases through Dbl family guanine nucleotide exchange factors (GEFs) remain totally unknown. Here we show that the Sec14-like domain, which lies in the N-terminus of the Dbl family GEFs Dbl and Ost, directs the subcellular localization of these GEFs and also their substrate Cdc42. When coexpressed with Cdc42 in human adenocarcinoma HeLa cells, Dbl-I and Ost-I, which lack the Sec14-like domain, translocated Cdc42 to the plasma membrane, where Dbl-I or Ost-I was colocalized. In marked contrast, Dbl-II and Ost-II, which contain the Sec14-like domain, were colocalized with Cdc42 in endomembrane compartments. Furthermore, ruffle membrane formation upon epidermal growth factor treatment was mediated by Dbl-I or Ost-I, but neither Dbl-II nor Ost-II, supporting a notion that GEFs with or without the Sec14-like domain are linked to different upstream signals. By employing a novel method to detect the active GTP-bound form of Cdc42 in situ, we demonstrate that Dbl-I and Ost-I, but neither Dbl-II nor Ost-II, indeed activate colocalized Cdc42.


Assuntos
Compartimento Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Imunofluorescência , Células HeLa , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA