Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167345, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38992847

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a significant public health concern worldwide. Immunomodulatory targets in the HNSCC tumor microenvironment are crucial to enhance the efficacy of HNSCC immunotherapy. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that has been linked to poor prognosis in many cancers, but the mechanistic role of MIF in HNSCC remains unclear. Using a murine orthotopic oral cancer model in Mif+/+ or Mif-/- mice, we determined the function of host derived MIF in HNSCC tumor development, metastasis as well as localized and systemic tumor immune responses. We observed that Mif-/- mice have decreased tumor growth and tumor burden compared to their wild-type counterparts. Flow cytometric analysis of immune populations within the primary tumor site revealed increased Th1 and cytotoxic T cell recruitment to the HNSCC tumor microenvironment. Within the tumors of Mif-/- mice, MIF deletion also enhanced the effector function of anti-tumoral effector CD8+ T cells as well as Th1 cells and decreased the accumulation of granulocytic myeloid derived suppressor cells (g-MDSCs) in the tumor microenvironment. Furthermore, MDSCs isolated from tumor bearing mice chemotactically respond to MIF in a dose dependent manner. Taken together, our results demonstrate a chemotactic and immunomodulatory role for host derived MIF in promoting HNSCC and suggest that MIF targeted immunomodulation is a promising approach for HNSCC treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Microambiente Tumoral/imunologia , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Camundongos Knockout , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Tolerância Imunológica , Células Th1/imunologia , Células Th1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo
2.
iScience ; 26(12): 108502, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125023

RESUMO

Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.

3.
Cell Rep ; 42(9): 113097, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682713

RESUMO

Although phagocytic cells are documented targets of Leishmania parasites, it is unclear whether other cell types can be infected. Here, we use unbiased single-cell RNA sequencing (scRNA-seq) to simultaneously analyze host cell and Leishmania donovani transcriptomes to identify and annotate parasitized cells in spleen and bone marrow in chronically infected mice. Our dual-scRNA-seq methodology allows the detection of heterogeneous parasitized populations. In the spleen, monocytes and macrophages are the dominant parasitized cells, while megakaryocytes, basophils, and natural killer (NK) cells are found to be unexpectedly infected. In the bone marrow, the hematopoietic stem cells (HSCs) expressing phagocytic receptors FcγR and CD93 are the main parasitized cells. Additionally, we also detect parasitized cycling basal cells, eosinophils, and macrophages in chronically infected mice. Flow cytometric analysis confirms the presence of parasitized HSCs. Our unbiased dual-scRNA-seq method identifies rare, parasitized cells, potentially implicated in pathogenesis, persistence, and protective immunity, using a non-targeted approach.

4.
Res Rep Trop Med ; 14: 61-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492219

RESUMO

Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.

5.
FASEB J ; 36(8): e22449, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839070

RESUMO

The presence of activated pancreatic stellate cells (PSCs) in the pancreatic ductal adenocarcinoma (PDAC) microenvironment plays a significant role in cancer progression. Macrophage migration inhibitory factor (MIF) is overexpressed in PDAC tissues and expressed by both cancer and stromal cells. The pathophysiological role of MIF in PDAC-associated fibroblasts or PSCs is yet to be elucidated. Here we report that the PSCs of mouse or cancer-associated fibroblast cells (CAFs) of human expresses MIF and its receptors, whose expression gets upregulated upon LPS or TNF-α stimulation. In vitro functional experiments showed that MIF significantly conferred a survival advantage to CAFs/PSCs upon growth factor deprivation. Genetic or pharmacological inhibition of MIF also corroborated these findings. Further, co-injection of mouse pancreatic cancer cells with PSCs isolated from Mif-/- or Mif+/+ mice confirmed the pro-survival effect of MIF in PSCs and also demonstrated the pro-tumorigenic role of MIF expressed by CAFs in vivo. Differential gene expression analysis and in vitro mechanistic studies indicated that MIF expressed by activated CAFs/PSCs confers a survival advantage to these cells by suppression of interferon pathway induced p53 dependent apoptosis.


Assuntos
Apoptose , Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Fatores Inibidores da Migração de Macrófagos , Neoplasias Pancreáticas , Animais , Apoptose/genética , Apoptose/fisiologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Interferons/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
6.
Br J Cancer ; 127(4): 624-636, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35595823

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a significant problem and is frequently resistant to current treatments. STAT1 is important in anti-tumour immune responses against HNSCC. However, the role of STAT1 expression by tumour cells and its regulation during HNSCC is unclear. METHODS: We determined the effects of STAT1 inhibition on tumour development and immunity in CAL27 and UMSCC22A HNSCC cell lines in vitro and in a HNSCC carcinogen-induced model in vivo. RESULTS: STAT1 siRNA knockdown in human HNSCC cells impaired their proliferation and expression of the immunosuppressive marker PD-L1. Stat1-deficient mice displayed increased oral lesion incidence and multiplicity during tumour carcinogenesis in vivo. Immunosuppressive markers PD-1 in CD8+ T cells and PD-L1 in monocytic MDSCs and macrophages were reduced in oral tumours and draining lymph nodes of tumour-bearing Stat1-deficient mice. However, STAT1 was required for anti-tumour functions of T cells during HNSCC in vivo. Finally, we identified TRIM24 to be a negative regulator of STAT1 that plays a similar tumorigenic function to STAT1 in vitro and thus may be a potential target when treating HNSCC. CONCLUSION: Our findings indicate that STAT1 activity plays an important role in tumorigenicity and immunosuppression during HNSCC development.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Animais , Antígeno B7-H1/genética , Carcinogênese , Proteínas de Transporte , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Humanos , Terapia de Imunossupressão , Camundongos , Fator de Transcrição STAT1/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral
7.
Cell Biochem Biophys ; 80(1): 45-61, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34387841

RESUMO

Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.


Assuntos
Fitosteróis , Animais , Macrófagos/metabolismo , Camundongos , Fosfolipases A2/metabolismo , Fitosteróis/metabolismo , Esteróis/metabolismo , Esteróis/farmacologia
8.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641387

RESUMO

Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells' ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.


Assuntos
Antiprotozoários/farmacologia , Apoptose , Dano ao DNA , Flavonoides/farmacologia , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/patologia , Macrófagos/patologia , Animais , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/genética , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Necrose
9.
Front Immunol ; 12: 748325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712235

RESUMO

Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.


Assuntos
Imunidade Inata , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Desenvolvimento de Vacinas , Animais , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Humanos , Evasão da Resposta Imune , Imunogenicidade da Vacina , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Mastócitos/imunologia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Células T Matadoras Naturais/imunologia , Neutrófilos/imunologia
10.
J Immunol ; 207(5): 1322-1332, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341171

RESUMO

MicroRNA-21 (miR-21) inhibits IL-12 expression and impairs the Th1 response necessary for control of Leishmania infection. Recent studies have shown that Leishmania infection induces miR-21 expression in dendritic cells and macrophages, and inhibition of miR-21 restores IL-12 expression. Because miR-21 is known to be expressed due to inflammatory stimuli in a wide range of hematopoietic cells, we investigated the role of miR-21 in regulating immune responses during visceral leishmaniasis (VL) caused by Leishmania donovani infection. We found that miR-21 expression was significantly elevated in dendritic cells, macrophages, inflammatory monocytes, polymorphonuclear neutrophils, and in the spleen and liver tissues after L. donovani infection, concomitant with an increased expression of disease exacerbating IL-6 and STAT3. Bone marrow dendritic cells from miR-21 knockout (miR-21KO) mice showed increased IL-12 production and decreased production of IL-10. On L. donovani infection, miR-21KO mice exhibited significantly greater numbers of IFN-γ- and TNF-α-producing CD4+ and CD8+ T cells in their organs that was associated with increased production of Th1-associated IFN-γ, TNF-α, and NO from the splenocytes. Finally, miR-21KO mice displayed significantly more developing and mature hepatic granulomas leading to reduction in organ parasitic loads compared with wild type counterparts. Similar results were noted in L. donovani-infected wild type mice after transient miR-21 depletion. These observations indicate that miR-21 plays a critical role in pathogenesis of VL by suppressing IL-12- and Th1-associated IFN-γ and also inducing disease-promoting induction of the IL-6 and STAT-3 signaling pathway. miR-21 could therefore be used as a potential target for developing host-directed treatment for VL.


Assuntos
Células Dendríticas/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , MicroRNAs/genética , Monócitos/imunologia , Neutrófilos/imunologia , Células Th1/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Resistência à Doença , Imunidade Celular , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
11.
Cell Death Dis ; 11(9): 774, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943608

RESUMO

Triple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored. Here we have shown that in TNBC patients, MIF expression was significantly enriched in the tumor compared to adjacent normal tissue. Using publically available patient datasets, we showed that MIF overexpression correlates with worse survival in TNBC compared to other hormonal status. Orthotopic implantation of TNBC cells into MIF knockout mice showed reduced tumor growth compared to wild-type mice. In addition, we have shown that MIF downregulation inhibits TNBC growth and progression in a syngeneic mouse model. We further showed that CPSI-1306, a small-molecule MIF inhibitor, inhibits the growth of TNBC cells in vitro. Mechanistic studies revealed that CPSI-1306 induces intrinsic apoptosis by alteration in mitochondrial membrane potential, cytochrome c (Cyt c) release, and activation of different caspases. In addition, CPSI-1306 inhibits the activation of cell survival and proliferation-related molecules. CPSI-1306 treatment also reduced the tumor growth and metastasis in orthotopic mouse models of mammary carcinoma. CPSI-1306 treatment of tumor-bearing mice significantly inhibited TNBC growth and pulmonary metastasis in a dose-dependent manner. Histological analysis of xenograft tumors revealed a higher number of apoptotic cells in CPSI-1306-treated tumors compared to vehicle controls. Our studies, for the first time, show that MIF overexpression in TNBC enhances growth and metastasis. Taken together, our results indicate that using small molecular weight MIF inhibitors could be a promising strategy to inhibit TNBC progression and metastasis.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Caspases/metabolismo , Movimento Celular , Sobrevivência Celular , Citocromos c/metabolismo , Progressão da Doença , Ativação Enzimática , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Inflamação , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/farmacologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Morfolinas/farmacologia , Metástase Neoplásica , Transplante de Neoplasias , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia , Cicatrização
12.
Vaccine ; 38(36): 5803-5813, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32684498

RESUMO

Listeria monocytogenes is a facultative intracellular pathogen responsible for the life-threatening disease listeriosis. The pore-forming toxin listeriolysin O (LLO) is a critical virulence factor that plays a major role in the L. monocytogenes intracellular lifecycle and is indispensable for pathogenesis. LLO is also a dominant antigen for T cells involved in sterilizing immunity and it was proposed that LLO acts as a T cell adjuvant. In this work, we generated a novel full-length LLO toxoid (LLOT) in which the cholesterol-recognition motif, a threonine-leucine pair located at the tip of the LLO C-terminal domain, was substituted with two glycine residues. We showed that LLOT lost its ability to bind cholesterol and to form pores. Importantly, LLOT retained binding to the surface of epithelial cells and macrophages, suggesting that it could efficiently be captured by antigen-presenting cells. We then determined if LLOT can be used as an antigen and adjuvant to protect mice from L. monocytogenes infection. Mice were immunized with LLOT alone or together with cholera toxin or Alum as adjuvants. We found that mice immunized with LLOT alone or in combination with the Th2-inducing adjuvant Alum were not protected against L. monocytogenes. On the other hand, mice immunized with LLOT along with the experimental adjuvant cholera toxin, were protected against L. monocytogenes, as evidenced by a significant decrease in bacterial burden in the liver and spleen three days post-infection. This immunization regimen elicited mixed Th1, Th2, and Th17 responses, as well as the generation of LLO-neutralizing antibodies. Further, we identified T cells as being required for immunization-induced reductions in bacterial burden, whereas B cells were dispensable in our model of non-pregnant young mice. Overall, this work establishes that LLOT is a promising vaccine antigen for the induction of protective immunity against L. monocytogenes by subunit vaccines containing Th1-driving adjuvants.


Assuntos
Toxinas Bacterianas , Listeria monocytogenes , Listeriose , Animais , Proteínas de Choque Térmico , Proteínas Hemolisinas , Listeriose/prevenção & controle , Camundongos , Vacinas de Subunidades Antigênicas
13.
Nat Commun ; 11(1): 3461, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651371

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Leishmania major/genética , Leishmania major/patogenicidade , Vacinas Atenuadas/uso terapêutico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Dexametasona/farmacologia , Feminino , Citometria de Fluxo , Edição de Genes , Engenharia Genética , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Psychodidae/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Eur J Pharm Biopharm ; 152: 307-317, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32485227

RESUMO

The present study aimed on the site specific delivery and enhanced in-vivo efficacy of antimonial drugs against the visceral leishmaniasis via macrophage targeted mannose anchored thiomer based nanoparticles. Mannose anchored thiolated nanoformulation [M-(CS-g-PEI)-TGA] was developed and evaluated in terms particle size, zeta-potential and entrapment efficacy. The TEM and EDX analysis was carried out to evaluate the morphology and successful entrapment of antimonial drug. Mucodhesion, permeation enhancement, oral pharmacokinetics, and in-vivo anti-leishmanial activity were carried out. The M-(CS-g-PEI)-TGA were found to be spherical having particle size of 287 ± 20 nm. Ex-vivo permeation indicated a 7.39-fold enhanced permeation of Meglumine Antimoniate with M-(CS-g-PEI)-TGA across Caco-2 cells compared to the Glucantime. Evaluation of in-vitro reduction in the parasitic burden via flow cytometric analysis indicated a 5.7-fold lower IC50 for M-(CS-g-PEI)-TGA compared to Glucantime. A 6.1-fold improvement in the oral bioavailability and 5.2-fold reduced parasitic burden in the L. donovani infected BALB/c mice model was observed with M-(CS-g-PEI)-TGA compared to Glucantime. The results encouraged the concept of M-(CS-g-PEI)-TGA nanoformulations as a promising strategy for oral therapy against visceral leishmaniasis.


Assuntos
Antiprotozoários/administração & dosagem , Antiprotozoários/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/metabolismo , Nanopartículas/química , Administração Oral , Animais , Antiprotozoários/metabolismo , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula
15.
Infect Immun ; 88(7)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32312766

RESUMO

Chagas disease, caused by the intracellular protozoan parasite Trypanosoma cruzi, is a public health problem affecting 6 to 8 million people, mainly in Latin America. The role of microRNAs in the pathogenesis of Chagas disease has not been well described. Here, we investigate the role of microRNA-155 (miR-155), a proinflammatory host innate immune regulator responsible for T helper type 1 and type 17 (Th1 and Th17) development and macrophage responses during T. cruzi infection. For this, we compared the survival and parasite growth and distribution in miR-155-/- and wild-type (WT) C57BL/6 mice. The lack of miR-155 caused robust parasite infection and diminished survival of infected mice, while WT mice were resistant to infection. Immunological analysis of infected mice indicated that, in the absence of miR-155, there was decreased interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. In addition, we found that there was a significant reduction of CD8-positive (CD8+) T cells, natural killer (NK) cells, and NK-T cells and increased accumulation of neutrophils and inflammatory monocytes in miR-155-/- mice. Collectively, these data indicate that miR-155 is an important immune regulatory molecule critical for the control of T. cruzi infection.


Assuntos
Doença de Chagas/genética , Doença de Chagas/parasitologia , MicroRNAs/genética , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Doença de Chagas/mortalidade , Citocinas/metabolismo , Progressão da Doença , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Prognóstico , Células Th1/imunologia , Células Th1/metabolismo , Trypanosoma cruzi/imunologia
16.
Br J Cancer ; 122(7): 1005-1013, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32025027

RESUMO

BACKGROUND: Ibrutinib is a Bruton's tyrosine kinase (BTK) and interleukin-2-inducible kinase (ITK) inhibitor used for treating chronic lymphocytic leukaemia (CLL) and other cancers. Although ibrutinib is known to inhibit the growth of breast cancer cell growth in vitro, its impact on the treatment and metastasis of breast cancer is unclear. METHODS: Using an orthotopic mouse breast cancer model, we show that ibrutinib inhibits the progression and metastasis of breast cancer. RESULTS: Ibrutinib inhibited proliferation of cancer cells in vitro, and Ibrutinib-treated mice displayed significantly lower tumour burdens and metastasis compared to controls. Furthermore, the spleens and tumours from Ibrutinib-treated mice contained more mature DCs and lower numbers of myeloid-derived suppressor cells (MDSCs), which promote disease progression and are linked to poor prognosis. We also confirmed that ex vivo treatment of MDSCs with ibrutinib switched their phenotype to mature DCs and significantly enhanced MHCII expression. Further, ibrutinib treatment promoted T cell proliferation and effector functions leading to the induction of antitumour TH1 and CTL immune responses. CONCLUSIONS: Ibrutinib inhibits tumour development and metastasis in breast cancer by promoting the development of mature DCs from MDSCs and hence could be a novel therapeutic agent for the treatment of breast cancer.


Assuntos
Adenina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Células Dendríticas/metabolismo , Células Supressoras Mieloides/metabolismo , Metástase Neoplásica/tratamento farmacológico , Piperidinas/uso terapêutico , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Camundongos , Piperidinas/farmacologia
17.
Int J Cancer ; 146(6): 1717-1729, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31709529

RESUMO

Cancers of the oral cavity remain the sixth most diagnosed cancer worldwide, with high rates of recurrence and mortality. We determined the role of STAT1 during oral carcinogenesis using two orthotopic models in mice genetically deficient for Stat1. Metastatic (LY2) and nonmetastatic (B4B8) head and neck squamous cell carcinoma (HNSCC) cell lines were injected into the oral cavity of Stat1 deficient (Stat1-/- ) and Stat1 competent (Stat1+/+ ) mice. Stat1-/- mice displayed increased tumor growth and metastasis compared to Stat1+/+ mice. Mechanistically, Stat1-/- mice displayed impaired CD4+ and CD8+ T-cell expansion compared to Stat1+/+ mice. This was associated with enhanced T-cell exhaustion, and severely attenuated T-cell antitumor effector responses including reduced expression of IFN-γ and perforin at the tumor site. Interestingly, tumor necrosis factor (TNF)-α production by T cells in tumor-bearing mice was suppressed by Stat1 deficiency. This deficiency in T-cell expansion and functional responses in mice was linked to PD-1 and CD69 overexpression in T cells of Stat1-/- mice. In contrast, we observed increased accumulation of CD11b+ Ly6G+ myeloid derived suppressor cells in tumors, draining lymph nodes, spleens and bone marrow of tumor-bearing Stat1-/- mice, resulting in a protumorigenic microenvironment. Our data demonstrates that STAT1 is an essential mediator of the antitumor response through inhibition of myeloid derived suppressor cell accumulation and promotion of T-cell mediated immune responses in murine head and neck squamous cell carcinoma. Selective induction of STAT1 phosphorylation in HNSCC patients could potentially improve oral tumor outcomes and response to therapy.


Assuntos
Imunomodulação , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Fator de Transcrição STAT1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Linfonodos/patologia , Masculino , Camundongos , Camundongos Knockout , Metástase Neoplásica , Estadiamento de Neoplasias , Fator de Transcrição STAT1/deficiência , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral
18.
Expert Opin Drug Deliv ; 17(1): 97-110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786952

RESUMO

Objective: To test the hypothesis that miltefosine (MTF)-polyphenol co-loaded second-generation nano-transfersomes (SGNTs) can be an effective approach for the topical treatment of cutaneous leishmaniasis (CL).Methods: The co-loaded SGNTs with various MTF-polyphenol combinations were developed, evaluated and compared for the entrapment efficiency, vesicle size, deformability index, ex-vivo permeation, cytotoxicity, and anti-leishmanial potential, using both in-vitro and in-vivo models.Results: The co-loaded SGNTs were spherical in shape, with an average size of 119 ± 1.5 nm and a high entrapment efficiency of 73.7 ± 3.7%. The ex-vivo study displayed a 3.2-fold higher permeation of MTF when entrapped in co-loaded SGNTs, whereas cytotoxicity potential of co-loaded SGNTs was 43.2% higher than the MTF solution. A synergistic interaction was observed between MTF and apigenin (APG) among all polyphenols and an 8.0-fold lower IC50 was found against amastigotes of DsRed Leishmania mexicana, compared with the plain MTF solution. Moreover, the in-vivo studies displayed a 9.5-fold reduced parasitic burden in the L. mexicana infected BALB/c mice treated with MTF-APG co-loaded SGNTs gel.Conclusions: The potential of MTF-APG co-loaded SGNTs topical formulation is established for the first time as an effective drug delivery strategy against CL.


Assuntos
Antiprotozoários/administração & dosagem , Portadores de Fármacos/química , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Lipossomos/química , Fosforilcolina/análogos & derivados , Administração Tópica , Animais , Antiprotozoários/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Sistemas de Liberação de Medicamentos , Feminino , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Testes de Sensibilidade Parasitária , Fosfatidilcolinas/química , Fosforilcolina/administração & dosagem , Fosforilcolina/química , Polifenóis/uso terapêutico , Espectrometria de Massas em Tandem
19.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593552

RESUMO

High levels of circulating miR-16 in the serum of multiple myeloma (MM) patients are independently associated with longer survival. Although the tumor suppressor function of intracellular miR-16 in MM plasma cells (PCs) has been elucidated, its extracellular role in maintaining a nonsupportive cancer microenvironment has not been fully explored. Here, we show that miR-16 is abundantly released by MM cells through extracellular vesicles (EVs) and that differences in its intracellular expression as associated with chromosome 13 deletion (Del13) are correlated to extracellular miR-16 levels. We also demonstrate that EVs isolated from MM patients and from the conditioned media of MM-PCs carrying Del13 more strongly differentiate circulating monocytes to M2-tumor supportive macrophages (TAMs), compared with MM-PCs without this chromosomal aberration. Mechanistically, our data show that miR-16 directly targets the IKKα/ß complex of the NF-κB canonical pathway, which is critical not only in supporting MM cell growth, but also in polarizing macrophages toward an M2 phenotype. By using a miR-15a-16-1-KO mouse model, we found that loss of the miR-16 cluster supports polarization to M2 macrophages. Finally, we demonstrate the therapeutic benefit of miR-16 overexpression in potentiating the anti-MM activity by a proteasome inhibitor in the presence of MM-resident bone marrow TAM.


Assuntos
Células da Medula Óssea/metabolismo , Macrófagos/metabolismo , MicroRNAs/fisiologia , Mieloma Múltiplo/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/genética , Mieloma Múltiplo/patologia , Microambiente Tumoral
20.
J Immunol Res ; 2019: 2946713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218234

RESUMO

Helminth parasites modulate immune responses in their host to prevent their elimination and to establish chronic infections. Our previous studies indicate that Taenia crassiceps-excreted/secreted antigens (TcES) downregulate inflammatory responses in rodent models of autoimmune diseases, by promoting the generation of alternatively activated-like macrophages (M2) in vivo. However, the molecular mechanisms triggered by TcES that modulate macrophage polarization and inflammatory response remain unclear. Here, we found that, while TcES reduced the production of inflammatory cytokines (IL-6, IL-12, and TNFα), they increased the release of IL-10 in LPS-induced bone marrow-derived macrophages (BMDM). However, TcES alone or in combination with LPS or IL-4 failed to increase the production of the canonical M1 or M2 markers in BMDM. To further define the anti-inflammatory effect of TcES in the response of LPS-stimulated macrophages, we performed transcriptomic array analyses of mRNA and microRNA to evaluate their levels. Although the addition of TcES to LPS-stimulated BMDM induced modest changes in the inflammatory mRNA profile, it induced the production of mRNAs associated with the activation of different receptors, phagocytosis, and M2-like phenotype. Moreover, we found that TcES induced upregulation of specific microRNAs, including miR-125a-5p, miR-762, and miR-484, which are predicted to target canonical inflammatory molecules and pathways in LPS-induced BMDM. These results suggest that TcES can modulate proinflammatory responses in macrophages by inducing regulatory posttranscriptional mechanisms and hence reduce detrimental outcomes in hosts running with inflammatory diseases.


Assuntos
Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , MicroRNAs/genética , Taenia/fisiologia , Animais , Biomarcadores , Citocinas/metabolismo , Feminino , Imunomodulação , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Teníase/genética , Teníase/imunologia , Teníase/metabolismo , Teníase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA