Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(3): e0244770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780466

RESUMO

The inhibitory signaling of CD200 receptor 1 (CD200R) has been attributed to its NPxY signaling motif. However, NPxY-motifs are present in multiple protein families and are mostly known to mediate protein trafficking between subcellular locations rather than signaling. Therefore, we investigated whether additional motifs specify the inhibitory function of CD200R. We performed phylogenetic analysis of the intracellular domain of CD200R in mammals, birds, bony fish, amphibians and reptiles. Indeed, the tyrosine of the NPxY-motif is fully conserved across species, in line with its central role in CD200R signaling. In contrast, P295 of the NPxY-motif is not conserved. Instead, a conserved stretch of negatively charged amino acids, EEDE279, and two conserved residues P285 and K292 in the flanking region prior to the NPxY-motif are required for CD200R mediated inhibition of p-Erk, p-Akt308, p-Akt473, p-rpS6 and LPS-induced IL-8 secretion. Altogether, we show that instead of the more common NPxY-motif, CD200R signaling can be assigned to a unique signaling motif in mammals defined by: EEDExxPYxxYxxKxNxxY.


Assuntos
Receptores de Orexina/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mutagênese Sítio-Dirigida , Receptores de Orexina/química , Receptores de Orexina/classificação , Receptores de Orexina/genética , Fosforilação , Filogenia , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/metabolismo
2.
J Agric Food Chem ; 52(8): 2358-65, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15080646

RESUMO

The antioxidant activity (IC(50)) of extra virgin olive oil (EVOO), commercial olive oil, and other vegetable oils (soybean, sunflower, and corn oil) was determined by UV-vis and by electron paramagnetic resonance (EPR) spectroscopy of the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Also, we studied the antioxidant activity of the methanol soluble phase (methanolic, MF) and the nonsoluble phase (lipidic, LF) of oils by the same methods. Similarly, we studied the effect of heating on the antioxidant activity at 160 and 190 degrees C. Also, the MF, containing the polyphenolic substances, was used for measurements of the radical scavenging capacity toward the most important oxygen free radicals, superoxide anion (O(2)(*)(-)) and hydroxyl (HO(*)) radicals. Results showed that soybean oil and EVOO had the highest antioxidant potential and thermal stability. In the case of soybean oil, the antioxidant capacity is the result of its high content of gamma- and delta-tocopherols (with the highest antioxidant capacity and thermostabilities), whereas in EVOO, the antioxidant potential is the result of the combination of specific antioxidant polyphenols, which are acting additionally as effective stabilizers of alpha-tocopherol. The high content of EVOO in tyrosol, hydrotyrosol, and oleuropein and other polyphenolics with radical scavenging abilities toward superoxide anion and hydroxyl radical suggests that olive oil possesses biological properties that could partially account for the observed beneficial health effects of the Mediterranean diet.


Assuntos
Sequestradores de Radicais Livres , Temperatura Alta , Lipídeos/química , Óleos de Plantas/química , Antioxidantes/análise , Compostos de Bifenilo , Espectroscopia de Ressonância de Spin Eletrônica , Azeite de Oliva , Picratos/química , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA