Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0279144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928885

RESUMO

Early Plasmodium falciparum and P. vivax infection requires parasite replication within host hepatocytes, referred to as liver stage (LS). However, limited understanding of infection dynamics in human LS exists due to species-specificity challenges. Reported here is a reproducible, easy-to-manipulate, and moderate-cost in vivo model to study human Plasmodium LS in mice; the ectopic huLiver model. Ectopic huLiver tumors were generated through subcutaneous injection of the HC-04 cell line and shown to be infectible by both freshly dissected sporozoites and through the bite of infected mosquitoes. Evidence for complete LS development was supported by the transition to blood-stage infection in mice engrafted with human erythrocytes. Additionally, this model was successfully evaluated for its utility in testing antimalarial therapeutics, as supported by primaquine acting as a causal prophylactic against P. falciparum. Presented here is a new platform for the study of human Plasmodium infection with the potential to aid in drug discovery.


Assuntos
Doenças Transmissíveis , Hepatopatias , Malária Falciparum , Malária Vivax , Malária , Plasmodium , Camundongos , Animais , Humanos , Fígado/parasitologia , Malária/tratamento farmacológico , Malária Falciparum/parasitologia , Hepatócitos/parasitologia , Plasmodium falciparum , Esporozoítos
2.
Front Cell Infect Microbiol ; 12: 920204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873153

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.


Assuntos
Antimaláricos , Malária Vivax , Malária , Animais , Medula Óssea/parasitologia , Modelos Animais de Doenças , Humanos , Malária/tratamento farmacológico , Malária Vivax/prevenção & controle , Camundongos , Plasmodium vivax
3.
Malar J ; 17(1): 50, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370800

RESUMO

BACKGROUND: Eradication of malaria is difficult because of the ability of hypnozoite, the dormant liver-stage form of Plasmodium vivax, to cause relapse in patients. Research efforts to better understand the biology of P. vivax hypnozoite and design relapse prevention strategies have been hampered by the lack of a robust and reliable model for in vitro culture of liver-stage parasites. Although the HC-04 hepatoma cell line is used for culturing liver-stage forms of Plasmodium, these cells proliferate unrestrictedly and detach from the culture dish after several days, which limits their usefulness in a long-term hypnozoite assay. METHODS: A novel immortalized hepatocyte-like cell line (imHC) was evaluated for the capability to support P. vivax sporozoite infection. First, expression of basic hepatocyte markers and all major malaria sporozoite-associated host receptors in imHC was investigated. Next, in vitro hepatocyte infectivity and intracellular development of sporozoites in imHC were determined using an indirect immunofluorescence assay. Cytochrome P450 isotype activity was also measured to determine the ability of imHC to metabolize drugs. Finally, the anti-liver-stage agent primaquine was used to test this model for a drug sensitivity assay. RESULTS: imHCs maintained major hepatic functions and expressed the essential factors CD81, SR-BI and EphA2, which are required for host entry and development of the parasite in the liver. imHCs could be maintained long-term in a monolayer without overgrowth and thus served as a good, supportive substrate for the invasion and growth of P. vivax liver stages, including hypnozoites. The observed high drug metabolism activity and potent responses in liver-stage parasites to primaquine highlight the potential use of this imHC model for antimalarial drug screening. CONCLUSIONS: imHCs, which maintain a hepatocyte phenotype and drug-metabolizing enzyme expression, constitute an alternative host for in vitro Plasmodium liver-stage studies, particularly those addressing the biology of P. vivax hypnozoite. They potentially offer a novel, robust model for screening drugs against liver-stage parasites.


Assuntos
Linhagem Celular , Técnicas de Cultura/métodos , Hepatócitos/parasitologia , Plasmodium vivax , Esporozoítos , Animais , Pesquisa Biomédica/métodos , Humanos , Fígado/citologia , Fígado/parasitologia , Parasitologia/métodos , Plasmodium vivax/patogenicidade , Plasmodium vivax/fisiologia , Esporozoítos/patogenicidade , Esporozoítos/fisiologia
4.
Malar J ; 16(1): 138, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376883

RESUMO

BACKGROUND: Myanmar has the heaviest burden of malaria in the Greater Mekong Sub-region. Asymptomatic Plasmodium spp. infections are common in this region and may represent an important reservoir of transmission that must be targeted for malaria elimination. METHODS: A mass blood survey was conducted among 485 individuals from six villages in Kayah State, an area of endemic but low transmission malaria in eastern Myanmar. Malaria infection was screened by rapid diagnostic test (RDT), light microscopy and real-time polymerase chain reaction (PCR), and its association with demographic factors was explored. RESULTS: The prevalence of asymptomatic Plasmodium spp. infection was 2.3% (11/485) by real-time PCR. Plasmodium vivax accounted for 72.7% (8/11) and Plasmodium falciparum for 27.3% (3/11) of infections. Men were at greater risk of infection by Plasmodium spp. than women. Individuals who worked as farmers or wood and bamboo cutters had an increased risk of infection. CONCLUSION: A combination of RDT, light microscopy and PCR diagnostics were used to identify asymptomatic malaria infection, providing additional information on asymptomatic cases in addition to the routine statistics on symptomatic cases, so as to determine the true burden of disease in the area. Such information and risk factors can improve malaria risk stratification and guide decision-makers towards better design and delivery of targeted interventions in small villages, representative of Kayah State.


Assuntos
Doenças Assintomáticas , Malária/epidemiologia , Parasitemia/epidemiologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Demografia , Testes Diagnósticos de Rotina , Feminino , Humanos , Lactente , Malária/diagnóstico , Malária/parasitologia , Masculino , Programas de Rastreamento , Microscopia , Pessoa de Meia-Idade , Mianmar/epidemiologia , Exposição Ocupacional , Parasitemia/diagnóstico , Parasitemia/parasitologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Adulto Jovem
5.
Malar J ; 16(1): 131, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347310

RESUMO

BACKGROUND: To date, human peripheral blood mononuclear cells (PBMCs) have been used mainly in immune stimulation assays and the interpretation of data can be influenced by the previous immunological history of donors and cross reactivity with other infectious agents. Resolving these limitations requires an alternative in vitro model to uncover the primary response profiles. METHODS: A novel in vitro model of mononuclear cells (MNCs) generated from haematopoietic stem cells (HSCs) was developed and these cells were then co-cultured with various antigens from Plasmodium falciparum and Plasmodium vivax to investigate the response of naïve immune cells to malaria antigens by flow cytometry. RESULTS: In vitro stimulation of naïve lymphocytes showed that CD4+ and CD8+ T lymphocytes were significantly reduced (P < 0.01) by exposure to lysates of infected erythrocytes or intact erythrocytes infected with P. falciparum. The depletion was associated with the expression of CD95 (Fas receptor) on the surface of T lymphocytes. Maturation of T lymphocytes was affected differently, showing elevated CD3+CD4+CD8+ and CD3+CD4-CD8- T lymphocytes after stimulation with cell lysates of P. falciparum and P. vivax, respectively. In addition, antigen presenting monocytes and dendritic cells derived from haematopoietic stem cells showed impaired HLA-DR expression as a consequence of exposure to different species of malaria parasites. CONCLUSION: These results suggest that naïve mononuclear cells differentiated in vitro from HSCs could provide a valid model for the assessment of immunity. P. falciparum and P. vivax malaria parasites could modulate various populations of immune cells starting from newly differentiated mononuclear cells.


Assuntos
Imunidade Celular , Leucócitos Mononucleares/imunologia , Malária Falciparum/imunologia , Malária Vivax/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia
6.
J Biol Chem ; 291(38): 19913-22, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27432885

RESUMO

Development of a Plasmodium falciparum (Pf) transmission blocking vaccine (TBV) has the potential to significantly impact malaria control. Antibodies elicited against sexual stage proteins in the human bloodstream are taken up with the blood meal of the mosquitoes and inactivate parasite development in the mosquito. In a phase 1 trial, a leading TBV identified as Pfs25-EPA/Alhydrogel® appeared safe and immunogenic, however, the level of Pfs25-specific antibodies were likely too low for an effective vaccine. Pfs230, a 230-kDa sexual stage protein expressed in gametocytes is an alternative vaccine candidate. A unique 6-cysteine-rich domain structure within Pfs230 have thwarted its recombinant expression and characterization for clinical evaluation for nearly a quarter of a century. Here, we report on the identification, biochemical, biophysical, and immunological characterization of recombinant Pfs230 domains. Rabbit antibodies generated against recombinant Pfs230 domains blocked mosquito transmission of a laboratory strain and two field isolates using an ex vivo assay. A planned clinical trial of the Pfs230 vaccine is a significant step toward the potential development of a transmission blocking vaccine to eliminate malaria.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/química , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/química , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/farmacologia , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/farmacologia , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas de Protozoários/farmacologia , Coelhos
7.
Innate Immun ; 21(7): 746-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26160686

RESUMO

Autophagy represents a key pathway in innate immune defense to restrict Mycobacterium tuberculosis growth inside host macrophages. Induction of autophagy has been shown to promote mycobacterial phagosome acidification and acquisition of lysosomal hydrolases, resulting in the elimination of intracellular M. tuberculosis reference strains such as H37Rv. The notorious Beijing genotype has been previously shown to be hyper-virulent and associated with increased survival in host cells and a high mortality rate in animal models, but the underlying mechanism that renders this family to have such advantages remains unclear. We hypothesize that autophagic control against M. tuberculosis Beijing strains may be altered. Here, we discovered that the Beijing strains can resist autophagic killing by host cells compared with that of the reference strain H37Rv and a strain belonging to the East African Indian genotype. Moreover, we have determined a possible underlying mechanism and found that the greater ability to evade autophagic elimination possessed by the Beijing strains stems from their higher capacity to inhibit autophagolysosome biogenesis upon autophagy induction. In summary, a previously unrecognized ability of the M. tuberculosis Beijing strains to evade host autophagy was identified, which may have important implications for tuberculosis treatment, especially in regions prevalent by the Beijing genotype.


Assuntos
Hidrolases/metabolismo , Lisossomos/microbiologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Animais , Autofagia/imunologia , Catepsina D/metabolismo , Linhagem Celular , Humanos , Evasão da Resposta Imune , Imunidade Inata , Lisossomos/metabolismo , Macrófagos/microbiologia , Camundongos , Especificidade da Espécie , Virulência
8.
Malar J ; 14: 198, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25962514

RESUMO

BACKGROUND: Endemic malaria in Thailand continues to only exist along international borders. This pattern is frequently attributed to importation of malaria from surrounding nations. A microgeographical approach was used to investigate malaria cases in a study village along the Thailand-Myanmar border. METHODS: Three mass blood surveys were conducted during the study period (July and December 2011, and May 2012) and were matched to a cohort-based demographic surveillance system. Blood slides and filter papers were taken from each participant. Slides were cross-verified by an expert microscopist and filter papers were analysed using nested PCR. Cases were then mapped to households and analysed using spatial statistics. A risk factor analysis was done using mixed effects logistic regression. RESULTS: In total, 55 Plasmodium vivax and 20 Plasmodium falciparum cases (out of 547 participants) were detected through PCR, compared to six and two (respectively) cases detected by field microscopy. The single largest risk factor for infection was citizenship. Many study participants were ethnic Karen people with no citizenship in either Thailand or Myanmar. This subpopulation had over eight times the odds of malaria infection when compared to Thai citizens. Cases also appeared to cluster near a major drainage system and year-round water source within the study village. CONCLUSION: This research indicates that many cases of malaria remain undiagnosed in the region. The spatial and demographic clustering of cases in a sub-group of the population indicates either transmission within the Thai village or shared exposure to malaria vectors outside of the village. While it is possible that malaria is imported to Thailand from Myanmar, the existence of undetected infections, coupled with an ecological setting that is conducive to malaria transmission, means that indigenous transmission could also occur on the Thai side of the border. Improved, timely, and active case detection is warranted.


Assuntos
Doenças Endêmicas , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium vivax/genética , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Fatores de Risco , Tailândia/epidemiologia , Adulto Jovem
9.
Cell Host Microbe ; 17(4): 526-35, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25800544

RESUMO

Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites-hypnozoites. The lack of tractable P. vivax animal models constitutes an obstacle in examining P. vivax liver stage infection and drug efficacy. To overcome this obstacle, we have used human liver-chimeric (huHep) FRG KO mice as a model for P. vivax infection. FRG KO huHep mice support P. vivax sporozoite infection, liver stage development, and hypnozoite formation. We show complete P. vivax liver stage development, including maturation into infectious exo-erythrocytic merozoites as well as the formation and persistence of hypnozoites. Prophylaxis or treatment with the antimalarial primaquine can prevent and eliminate liver stage infection, respectively. Thus, P. vivax-infected FRG KO huHep mice are a model to investigate liver stage development and dormancy and may facilitate the discovery of drugs targeting relapsing malaria.


Assuntos
Modelos Animais de Doenças , Fígado/patologia , Fígado/parasitologia , Malária Vivax/patologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Animais , Antimaláricos/administração & dosagem , Quimioprevenção/métodos , Quimera , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Camundongos Knockout , Camundongos SCID , Plasmodium vivax/crescimento & desenvolvimento , Primaquina/administração & dosagem , Resultado do Tratamento
10.
Vaccine ; 33(16): 1901-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25765968

RESUMO

Malaria transmission-blocking vaccines (TBV) aim to interfere with the development of the malaria parasite in the mosquito vector, and thus prevent spread of transmission in a community. To date three TBV candidates have been identified in Plasmodium vivax; namely, the gametocyte/gamete protein Pvs230, and the ookinete surface proteins Pvs25 and Pvs28. The Plasmodium falciparum gametocyte/gamete stage proteins Pfs48/45 and Pfs47 have been studied as TBV candidates, and Pfs48/45 shown to induce transmission-blocking antibodies, but the candidacy of their orthologs in P. vivax, Pvs48/45 (PVX_083235) and Pvs47 (PVX_083240), for vivax TBV have not been tested. Herein we investigated whether targeting Pvs48/45 and Pvs47 can inhibit parasite transmission to mosquitoes, using P. vivax isolates obtained in Thailand. Mouse antisera directed against the products from plasmids expressing Pvs48/45 and Pvs47 detected proteins of approximately 45- and 40-kDa, respectively, in the P. vivax gametocyte lysate, by Western blot analysis under non-reducing conditions. In immunofluorescence assays Pvs48/45 was detected predominantly on the surface and Pvs47 was detected in the cytoplasm of gametocytes. Membrane feeding transmission assays demonstrated that anti-Pvs48/45 and -Pvs47 mouse sera significantly reduced the number of P. vivax oocysts developing in the mosquito midgut. Limited amino acid polymorphism of these proteins was observed among 27 P. vivax isolates obtained from Thailand, Vanuatu, and Colombia; suggesting that polymorphism may not be an impediment for the utilization of Pvs48/45 and Pvs47 as TBV antigens. In one Thai isolate we found that the fourth cysteine residue in the Pvs47 cysteine-rich domain (CRD) III (amino acid position 337) is substituted to phenylalanine. However, antibodies targeting Pvs47 CRDI-III showed a significant transmission-reducing activity against this isolate, suggesting that this substitution in Pvs47 was not critical for recognition by the generated antibodies. In conclusion, our results indicate that Pvs48/45 and Pvs47 are potential transmission-blocking vaccine candidates of P. vivax.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Vacinas de DNA/imunologia , Substituição de Aminoácidos , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Feminino , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Malária Vivax/transmissão , Camundongos , Peptídeos/genética , Peptídeos/imunologia , Plasmodium vivax/genética , Polimorfismo Genético , Ratos , Vacinação , Vacinas de DNA/administração & dosagem
11.
Parasit Vectors ; 7: 64, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24520895

RESUMO

BACKGROUND: Plasmodium vivax is the most widespread human malaria in tropical and subtropical countries, including the Republic of Korea. Vivax malaria is characterized by hypnozoite relapse and long latency infection by the retained liver stage of P. vivax, and somewhat surprisingly, little is known of the liver stage antigens of this parasite. Here, we report for the first time the characterization of a liver stage antigen of P. vivax (PvLSA). METHODS: Five peptides located inside PvLSA were synthesized, and specific anti-sera to the respective peptides were used to localize PvLSA on P. vivax parasites in human liver cells by immunofluorescence. Western blotting and enzyme-linked immunosorbent assay were performed using the five peptides and sera collected from vivax malaria patients and from normal healthy controls. RESULTS: PvLSA was localized on P. vivax parasites in human liver cells. Vivax malaria-infected patients were detected using the five peptides by western blotting. Furthermore, the peptides reacted with the sera of vivax malaria patients. CONCLUSIONS: These results suggest that PvLSA may function during the liver stage of P. vivax.


Assuntos
Antígenos de Protozoários/imunologia , Peptídeos/imunologia , Plasmodium vivax/imunologia , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Ensaio de Imunoadsorção Enzimática , Humanos , Malária Vivax/imunologia , Dados de Sequência Molecular , Peptídeos/química
12.
PLoS One ; 8(3): e59192, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555629

RESUMO

The recent detection of clinical Artemisinin (ART) resistance manifested as delayed parasite clearance in the Cambodia-Thailand border area raises a serious concern. The mechanism of ART resistance is not clear; but the P. falciparum sarco/endoplasmic reticulum Ca(2+)-ATPase (PfSERCA or PfATP6) has been speculated to be the target of ARTs and thus a potential marker for ART resistance. Here we amplified and sequenced pfatp6 gene (~3.6 Kb) in 213 samples collected after 2005 from the Greater Mekong Subregion, where ART drugs have been used extensively in the past. A total of 24 single nucleotide polymorphisms (SNPs), including 8 newly found in this study and 13 nonsynonymous, were identified. However, these mutations were either uncommon or also present in other geographical regions with limited ART use. None of the mutations were suggestive of directional selection by ARTs. We further analyzed pfatp6 from a worldwide collection of 862 P. falciparum isolates in 19 populations from Asia, Africa, South America and Oceania, which include samples from regions prior to and after deployments ART drugs. A total of 71 SNPs were identified, resulting in 106 nucleotide haplotypes. Similarly, many of the mutations were continent-specific and present at frequencies below 5%. The most predominant and perhaps the ancestral haplotype occurred in 441 samples and was present in 16 populations from Asia, Africa, and Oceania. The 3D7 haplotype found in 54 samples was the second most common haplotype and present in nine populations from all four continents. Assessment of the selection strength on pfatp6 in the 19 parasite populations found that pfatp6 in most of these populations was under purifying selection with an average d(N)/d(S) ratio of 0.333. Molecular evolution analyses did not detect significant departures from neutrality in pfatp6 for most populations, challenging the suitability of this gene as a marker for monitoring ART resistance.


Assuntos
ATPases Transportadoras de Cálcio/genética , DNA de Protozoário/genética , Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Sudeste Asiático , ATPases Transportadoras de Cálcio/classificação , DNA de Protozoário/classificação , Resistência a Medicamentos , Haplótipos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Filogeografia , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Seleção Genética
13.
Parasitol Res ; 112(2): 585-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23097184

RESUMO

Plasmodium vivax is one of the most important human malaria species that is geographically widely endemic and potentially affects a larger number of people than its more notorious cousin, Plasmodium falciparum. During invasion of red blood cells, the parasite requires the intervention of high molecular weight complex rhoptry proteins (RhopH) that are also essential for cytoadherence. PfRhopH2, a member of the RhopH multigene family, has been characterized as being crucial during P. falciparum infection. This study describes identifying and characterizing the pfrhoph2 orthologous gene in P. vivax (hereinafter named pvrhoph2). The PvRhopH2 is a 1,369-amino acid polypeptide encoded by PVX_099930 gene, for which orthologous genes have been identified in other Plasmodium species by bioinformatic approaches. Both P. falciparum and P. vivax genes contain nine introns, and there is a high degree of similarity between the deduced amino acid sequences of the two proteins. Moreover, PvRhopH2 contains a signal peptide at its N-terminus and 12 cysteines predominantly in its C-terminal half. PvRhopH2 is localized in one of the apical organelles of the merozoite, the rhoptry, and the localization pattern is similar to that of PfRhopH2 in P. falciparum. The recombinant PvRhopH2 protein is recognized by serum antibodies of patients naturally exposed to P. vivax, suggesting that PvRhopH2 is immunogenic in humans.


Assuntos
Plasmodium vivax/genética , Proteínas de Protozoários/genética , Fatores de Virulência/genética , Anticorpos Antiprotozoários/sangue , Biologia Computacional , Humanos , Íntrons , Malária Vivax/imunologia , Plasmodium falciparum/genética , Plasmodium vivax/patogenicidade , Sinais Direcionadores de Proteínas , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
14.
Trop Med Health ; 40(3): 79-89, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23264727

RESUMO

Plasmodium falciparum SURFIN(4.1) is a type I transmembrane protein thought to locate on the merozoite surface and to be responsible for a reversible adherence to the erythrocyte before invasion. In this study, we evaluated surf(4.1) gene segment encoding extracellular region for polymorphism, the signature of positive selection, the degree of linkage disequilibrium, and temporal change in allele frequency distribution in P. falciparum isolates from Thailand in 1988-89, 2003, and 2005. We found that SURFIN(4.1) is highly polymorphic, particularly at the C-terminal side of the variable region located just before a predicted transmembrane region. A signature of positive diversifying selection on the variable region was detected by multiple tests and, to a lesser extent, on conserved N-terminally located cysteine-rich domain by Tajima's D test. Linkage disequilibrium between sites over a long distance (> 1.5 kb) was detected, and multiple SURFIN(4.1) haplotype sequences detected in 1988/89 still circulated in 2003. Few of the single amino acid polymorphism allele frequency distributions were significantly different between the 1988/89 and 2003 groups, suggesting that the frequency distribution of SURFIN(4.1) extracellular region remained stable over 14 years.

15.
Vaccine ; 30(22): 3311-9, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22425788

RESUMO

Plasmodium vivax is the major cause of malaria outside of sub-Saharan Africa and causes morbidity and results in significant economic impact in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study, groups of C57BL/6J mice were immunized subcutaneously three times with VMP001 emulsified with synthetic TLR4 (GLA) or TLR7/8 (R848) agonist in stable emulsion (SE), a combination of the TLR4 and TLR7/8 agonists, or SE alone. Sera and splenocytes were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of mice generated high titers of anti-P. vivax IgG antibodies as detected by ELISA and immunofluorescence assay. GLA-SE promoted a shift in the antibody response to a Th1 profile, as demonstrated by the change in IgG2c/IgG1 ratio. In addition, GLA-SE induced a strong cellular immune response characterized by multi-functional, antigen-specific CD4(+) T cells secreting IL-2, TNF and IFN-γ. In contrast, mice immunized with SE or R848-SE produced low numbers of antigen-specific CD4(+) T cells, and these T cells secreted IL-2 and TNF, but not IFN-γ. Finally, R848-SE did not enhance the immune response compared to GLA-SE alone. Based on these results, we conclude that the combination of VMP001 and GLA-SE is highly immunogenic in mice and may serve as a potential second-generation vaccine candidate against vivax malaria.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Antimaláricas/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Linfócitos T CD4-Positivos/imunologia , Emulsões/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Imunoglobulina G/sangue , Injeções Subcutâneas , Interferon gama/metabolismo , Interleucina-2/metabolismo , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
16.
Parasitol Int ; 61(3): 443-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22394409

RESUMO

Pf12 in Plasmodium falciparum has been characterized as a merozoite surface protein and the Pf12 gene is actively transcribed during schizont stage. An orthologous gene, Pv12, has been identified in genome of P. vivax, but the protein product has not been characterized. The Pv12 is a 362 amino acid long polypeptide encoded by a single exon gene PVX_113775, for which orthologous genes have been identified in other Plasmodium species by bioinformatic approaches. Pv12 contains two predicted six-cysteine (6-Cys) domains, which may be constrained by predicted disulfide bonds, and a transmembrane domain and a predicted GPI anchor attachment site in C-terminal region. The recombinant Pv12 protein is recognized by serum antibodies of patients naturally exposed to P. vivax and the native Pv12 protein from parasite extract is also recognized by immune mouse serum. The Pv12 is localized in rhoptry; an apical organelle of the merozoite, and the localization pattern of Pv12 is distinct from that of Pf12 in P. falciparum. The present study suggests that Pv12 is immunogenic in humans during parasite infection and it could play an important role in erythrocyte invasion.


Assuntos
Antígenos de Protozoários/genética , Genes de Protozoários , Merozoítos/química , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/química , Western Blotting , Biologia Computacional , Cisteína/química , Cisteína/genética , DNA de Protozoário/genética , Eletroforese em Gel de Poliacrilamida , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Imunofluorescência , Humanos , Merozoítos/citologia , Merozoítos/imunologia , Camundongos , Dados de Sequência Molecular , Plasmodium vivax/imunologia , Plasmodium vivax/metabolismo , Proteínas de Protozoários/imunologia , Análise de Sequência de DNA
17.
Parasitol Int ; 61(2): 317-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22212242

RESUMO

Plasmodium falciparum SURFIN4.2 (PFD1160w) is a polymorphic protein expressed on the surface of parasite-infected erythrocytes. Such molecules are expected to be under strong host immune pressure, thus we analyzed the nucleotide diversity of the N-terminal extracellular region of SURFIN4.2 using P. falciparum isolates obtained from a malaria hypoendemic area of Thailand. The extracellular region of SURFIN4.2 was divided into four regions based on the amino acid sequence conservation among SURFIN members and the level of polymorphism among SURFIN4.2 sequences; N-terminal segment (Nter), a cysteine-rich domain (CRD), a variable region 1 (Var1), and a variable region 2 (Var2). Comparison between synonymous and non-synonymous substitutions, Tajima's D test, and Fu and Li's D* and F* tests detected signatures of positive selection on Var2 and to a lesser extent Var1, suggesting that these regions were likely under host immune pressure. Strong linkage disequilibrium was detected for nucleotide pairs separated by a distance of more than 1.5 kb, and 7 alleles among 19 alleles detected in 1988-1989 still circulated 14 years later, suggesting low recombination of the analyzed surf4.2 sequence region in Thailand. The allele frequency distribution of polymorphic areas in Var2 did not differ between two groups collected in different time points, suggesting the allele frequency distribution of this region was stable for 14 years. The observed allele frequency distribution of SURFIN4.2 Var2 may be fixed in Thai P. falciparum population as similar to the observation for P. falciparum merozoite surface protein 1, for which a stable allele frequency distribution was reported.


Assuntos
Frequência do Gene/genética , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Sequência de Aminoácidos , Sequência de Bases , DNA de Protozoário/química , DNA de Protozoário/genética , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Desequilíbrio de Ligação , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Recombinação Genética , Seleção Genética , Análise de Sequência de DNA , Tailândia
18.
Acta Trop ; 121(3): 240-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21515238

RESUMO

Despite significant improvement in the malaria situation of the Greater Mekong Subregion (GMS), malaria control for the region continues to face a multitude of challenges. The extremely patchy malaria distribution, especially along international borders, makes disease surveillance and targeted control difficult. The vector systems are also diverse with dramatic differences in habitat ecology, biting behavior, and vectorial capacity, and there is a lack of effective transmission surveillance and control tools. Finally, in an era of heavy deployment of artemisinin-based combination therapies, the region acts as an epicenter of drug resistance, with the emergence of artemisinin resistant Plasmodium falciparum posing a threat to both regional and global malaria elimination campaigns. This problem is further exacerbated by the circulation of counterfeit and substandard artemisinin drugs. Accordingly, this Southeast Asian Malaria Research Center, consisting of a consortium of US and regional research institutions, has proposed four interlinked projects to address these most urgent problems in malaria control. The aims of these projects will help to substantially improve our understanding of malaria epidemiology, vector systems and their roles in malaria transmission, as well as the mechanisms of drug resistance in parasites. Through the training of next-generation scientists in malaria research, this program will help build up and strengthen regional research infrastructure and capacities, which are essential for sustained malaria control in this region.


Assuntos
Erradicação de Doenças/organização & administração , Insetos Vetores/efeitos dos fármacos , Malária Falciparum/prevenção & controle , Programas Nacionais de Saúde/organização & administração , Projetos de Pesquisa , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Sudeste Asiático/epidemiologia , Erradicação de Doenças/métodos , Resistência a Medicamentos , Humanos , Insetos Vetores/parasitologia , Inseticidas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Pesquisa/educação , Pesquisa/organização & administração , Recursos Humanos
19.
Science ; 334(6061): 1372-7, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22096101

RESUMO

Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Imidazóis/farmacologia , Fígado/parasitologia , Malária/tratamento farmacológico , Piperazinas/farmacologia , Plasmodium/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Eritrócitos/parasitologia , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/uso terapêutico , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Plasmodium/citologia , Plasmodium/crescimento & desenvolvimento , Plasmodium/fisiologia , Plasmodium berghei/citologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Plasmodium yoelii/citologia , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Distribuição Aleatória , Bibliotecas de Moléculas Pequenas , Esporozoítos/efeitos dos fármacos , Esporozoítos/crescimento & desenvolvimento
20.
Infect Immun ; 79(9): 3492-500, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21690242

RESUMO

Plasmodium vivax is the major cause of malaria outside sub-Saharan Africa and inflicts debilitating morbidity and consequent economic impacts in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of a novel chimeric recombinant protein, VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Very few adjuvant formulations are currently available for human use. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study rhesus monkeys were immunized intramuscularly three times with VMP001 in combination with a stable emulsion (SE) or a synthetic Toll-like receptor 4 (TLR4) agonist (glucopyranosyl lipid A [GLA]) in SE (GLA-SE). Sera and peripheral blood mononuclear cells (PBMCs) were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of monkeys generated high titers of anti-P. vivax IgG antibodies, as detected by enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. In addition, all groups generated a cellular immune response characterized by antigen-specific CD4(+) T cells secreting predominantly interleukin-2 (IL-2) and lesser amounts of tumor necrosis factor (TNF). We conclude that the combination of VMP001 and GLA-SE is safe and immunogenic in monkeys and may serve as a potential second-generation vaccine candidate against P. vivax malaria.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Receptor 4 Toll-Like/agonistas , Adjuvantes Imunológicos , Animais , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos , Emulsões , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Imunoglobulina G/sangue , Interferon gama/biossíntese , Interleucina-2/biossíntese , Interleucina-2/metabolismo , Lipídeo A/imunologia , Macaca mulatta , Malária Vivax/imunologia , Proteínas de Protozoários/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA