Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5641, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163368

RESUMO

Prebiotic fibers, polyphenols and other molecular components of food crops significantly affect the composition and function of the human gut microbiome and human health. The abundance of these, frequently uncharacterized, microbiome-active components vary within individual crop species. Here, we employ high throughput in vitro fermentations of pre-digested grain using a human microbiome to identify segregating genetic loci in a food crop, sorghum, that alter the composition and function of human gut microbes. Evaluating grain produced by 294 sorghum recombinant inbreds identifies 10 loci in the sorghum genome associated with variation in the abundance of microbial taxa and/or microbial metabolites. Two loci co-localize with sorghum genes regulating the biosynthesis of condensed tannins. We validate that condensed tannins stimulate the growth of microbes associated with these two loci. Our work illustrates the potential for genetic analysis to systematically discover and characterize molecular components of food crops that influence the human gut microbiome.


Assuntos
Microbioma Gastrointestinal , Proantocianidinas , Sorghum , Produtos Agrícolas , Grão Comestível/genética , Microbioma Gastrointestinal/genética , Humanos , Polifenóis , Sementes/genética , Sorghum/genética
2.
Plant Cell Environ ; 43(1): 223-234, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411732

RESUMO

To grow and thrive plants must be able to adapt to both adverse environmental conditions and attack by a variety of pests. Elucidating the sophisticated mechanisms plants have developed to achieve this has been the focus of many studies. What is less well understood is how plants respond when faced with multiple stressors simultaneously. In this study, we assess the response of Zea mays (maize) to the combinatorial stress of flooding and infestation with the insect pest Spodoptera frugiperda (fall armyworm). This combined stress leads to elevated production of the defence hormone salicylic acid, which does not occur in the individual stresses, and the resultant salicylic acid-dependent increase in S. frugiperda resistance. Remodelling of phenylpropanoid pathways also occurs in response to this combinatorial stress leading to increased production of the anti-insect C-glycosyl flavones (maysins) and the herbivore-induced volatile phenolics, benzyl acetate, and phenethyl acetate. Furthermore, changes in cellular redox status also occur, as indicated by reductions in peroxidase and polyphenol oxidase activity. These data suggest that metabolite changes important for flooding tolerance and anti-insect defence may act both additively and synergistically to provide extra protection to the plant.


Assuntos
Resistência à Doença/fisiologia , Inundações , Insetos/fisiologia , Zea mays/metabolismo , Animais , Catecol Oxidase/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Larva/fisiologia , Peroxidase/metabolismo , Doenças das Plantas , Ácido Salicílico/metabolismo , Spodoptera/fisiologia
3.
PLoS One ; 13(10): e0204153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289910

RESUMO

Sorghum (Sorghum bicolor) is a drought tolerant crop, which is being developed as a bioenergy feedstock. The monolignol biosynthesis pathway is a major focus for altering the abundance and composition of lignin. Caffeoyl coenzyme-A O-methyltransferase (CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase that methylates caffeoyl-CoA to generate feruloyl-CoA, an intermediate required for the biosynthesis of both G- and S-lignin. SbCCoAOMT was overexpressed to assess the impact of increasing the amount of this enzyme on biomass composition. SbCCoAOMT overexpression increased both soluble and cell wall-bound (esterified) ferulic and sinapic acids, however lignin concentration and its composition (S/G ratio) remained unaffected. This increased deposition of hydroxycinnamic acids in these lines led to an increase in total energy content of the stover. In stalk and leaf midribs, the increased histochemical staining and autofluorescence in the cell walls of the SbCCoAOMT overexpression lines also indicate increased phenolic deposition within cell walls, which is consistent with the chemical analyses of soluble and wall-bound hydroxycinnamic acids. The growth and development of overexpression lines were similar to wild-type plants. Likewise, RNA-seq and metabolite profiling showed that global gene expression and metabolite levels in overexpression lines were also relatively similar to wild-type plants. Our results demonstrate that SbCCoAOMT overexpression significantly altered cell wall composition through increases in cell wall associated hydroxycinnamic acids without altering lignin concentration or affecting plant growth and development.


Assuntos
Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Metiltransferases/genética , Sorghum/crescimento & desenvolvimento , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metiltransferases/metabolismo , Imagem Óptica , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Análise de Sequência de RNA , Sorghum/enzimologia , Sorghum/genética
4.
New Phytol ; 217(1): 82-104, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28944535

RESUMO

Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, the overexpression of SbMyb60 in sorghum (Sorghum bicolor) has been shown to induce monolignol biosynthesis, which leads to elevated lignin deposition and altered cell wall composition. To determine how SbMyb60 overexpression impacts other metabolic pathways, RNA-Seq and metabolite profiling were performed on stalks and leaves. 35S::SbMyb60 was associated with the transcriptional activation of genes involved in aromatic amino acid, S-adenosyl methionine (SAM) and folate biosynthetic pathways. The high coexpression values between SbMyb60 and genes assigned to these pathways indicate that SbMyb60 may directly induce their expression. In addition, 35S::SbMyb60 altered the expression of genes involved in nitrogen (N) assimilation and carbon (C) metabolism, which may redirect C and N towards monolignol biosynthesis. Genes linked to UDP-sugar biosynthesis and cellulose synthesis were also induced, which is consistent with the observed increase in cellulose deposition in the internodes of 35S::SbMyb60 plants. However, SbMyb60 showed low coexpression values with these genes and is not likely to be a direct regulator of cell wall polysaccharide biosynthesis. These findings indicate that SbMyb60 can activate pathways beyond monolignol biosynthesis, including those that synthesize the substrates and cofactors required for lignin biosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metabolismo Secundário , Sorghum/genética , Fatores de Transcrição/metabolismo , Vias Biossintéticas , Parede Celular/metabolismo , Celulose/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Metabolômica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de RNA , Sorghum/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
5.
Plant J ; 92(6): 1059-1075, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030891

RESUMO

Switchgrass (Panicum virgatum), a perennial, polyploid, C4 warm-season grass is among the foremost herbaceous species being advanced as a source of biomass for biofuel end uses. At the end of every growing season, the aerial tissues senesce, and the below-ground rhizomes become dormant. Future growth is dependent on the successful over-wintering of the rhizomes. Although the importance of rhizome health to overall year-upon-year plant productivity has been long recognized, there is limited information on seasonal changes occurring during dormancy at both the transcriptome and metabolite levels. Here, global changes in transcriptomes and metabolites were investigated over two growing seasons in rhizomes harvested from field-grown plants. The objectives were: (a) synthesize information on cellular processes that lead to dormancy; and (b) provide models that could account for major metabolic pathways present in dormant switchgrass rhizomes. Overall, metabolism during dormancy appeared to involve discrete but interrelated events. One was a response to abscisic acid that resulted in dehydration, increases in osmolytes and upregulation of autophagic processes, likely through the target of rapamycin complex and sucrose non-fermentative-related kinase-based signaling cascades. Another was a recalibration of energy transduction through apparent reductions in mitochondrial oxidative phosphorylation, increases in substrate level generation of ATP and reducing equivalents, and recycling of N and possibly CO2 through refixation. Lastly, transcript abundances indicated that cold-related signaling was also occurring. Altogether, these data provide a detailed overview of rhizome metabolism, especially during dormancy, which can be exploited in the future to improve winter survival in switchgrass.


Assuntos
Ácido Abscísico/metabolismo , Panicum/genética , Reguladores de Crescimento de Plantas/metabolismo , Rizoma/genética , Transcriptoma , Biocombustíveis , Biomassa , Mapeamento Cromossômico , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Poliploidia , Rizoma/crescimento & desenvolvimento , Rizoma/metabolismo , Estações do Ano , Análise de Sequência de RNA
6.
Plant Physiol ; 172(1): 78-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457122

RESUMO

Caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase responsible for methylation of the meta-hydroxyl group of caffeoyl-coenzyme A (CoA) on the pathway to monolignols, with their ring methoxylation status characteristic of guaiacyl or syringyl units in lignin. In order to better understand the unique class of type 2 O-methyltransferases from monocots, we have characterized CCoAOMT from sorghum (Sorghum bicolor; SbCCoAOMT), including the SAM binary complex crystal structure and steady-state enzyme kinetics. Key amino acid residues were validated with site-directed mutagenesis. Isothermal titration calorimetry data indicated a sequential binding mechanism for SbCCoAOMT, wherein SAM binds prior to caffeoyl-CoA, and the enzyme showed allosteric behavior with respect to it. 5-Hydroxyferuloyl-CoA was not a substrate for SbCCoAOMT. We propose a catalytic mechanism in which lysine-180 acts as a catalytic base and deprotonates the reactive hydroxyl group of caffeoyl-CoA. This deprotonation is facilitated by the coordination of the reactive hydroxyl group by Ca(2+) in the active site, lowering the pKa of the 3'-OH group. Collectively, these data give a new perspective on the catalytic mechanism of CCoAOMTs and provide a basis for the functional diversity exhibited by type 2 plant OMTs that contain a unique insertion loop (residues 208-231) conferring affinity for phenylpropanoid-CoA thioesters. The structural model of SbCCoAOMT can serve as the basis for protein engineering approaches to enhance the nutritional, agronomic, and industrially relevant properties of sorghum.


Assuntos
Acil Coenzima A/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/enzimologia , Sequência de Aminoácidos , Biocatálise , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Cinética , Lisina/química , Lisina/genética , Lisina/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Sorghum/genética , Especificidade por Substrato , Termodinâmica
7.
Plant Physiol ; 165(4): 1440-1456, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948836

RESUMO

Using S-adenosyl-methionine as the methyl donor, caffeic acid O-methyltransferase from sorghum (Sorghum bicolor; SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde. In order to determine the mechanism of SbCOMT and understand the observed reduction in the lignin syringyl-to-guaiacyl ratio of three brown midrib12 mutants that carry COMT gene missense mutations, we determined the apo-form and S-adenosyl-methionine binary complex SbCOMT crystal structures and established the ternary complex structure with 5-hydroxyconiferaldehyde by molecular modeling. These structures revealed many features shared with monocot ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs. SbCOMT steady-state kinetic and calorimetric data suggest a random bi-bi mechanism. Based on our structural, kinetic, and thermodynamic results, we propose that the observed reactivity hierarchy among 4,5-dihydroxy-3-methoxycinnamyl (and 3,4-dihydroxycinnamyl) aldehyde, alcohol, and acid substrates arises from the ability of the aldehyde to stabilize the anionic intermediate that results from deprotonation of the 5-hydroxyl group by histidine-267. Additionally, despite the presence of other phenylpropanoid substrates in vivo, sinapaldehyde is the preferential product, as demonstrated by its low Km for 5-hydroxyconiferaldehyde. Unlike its acid and alcohol substrates, the aldehydes exhibit product inhibition, and we propose that this is due to nonproductive binding of the S-cis-form of the aldehydes inhibiting productive binding of the S-trans-form. The S-cis-aldehydes most likely act only as inhibitors, because the high rotational energy barrier around the 2-propenyl bond prevents S-trans-conversion, unlike alcohol substrates, whose low 2-propenyl bond rotational energy barrier enables rapid S-cis/S-trans-interconversion.

8.
J Agric Food Chem ; 58(9): 5220-6, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20397733

RESUMO

Plant caffeic acid O-methyltransferases (COMTs) use S-adenosylmethionine (ado-met), as a methyl donor to transmethylate their preferred (phenolic) substrates in vivo, and will generally utilize a range of phenolic compounds in vitro. Collazo et al. (Anal. Biochem. 2005, 342, 86-92) have published a discrete, end-point fluorescence assay to detect histone methyltransferases using S-adenosyl homocysteine hydrolase and adeonsine deaminase as coupling enzymes and a thiol-specific fluorophore, Thioglo1, as the detecting reagent. Using this previous assay as a guide, we have developed and validated a facile, sensitive and real-time fluorescence assay for characterizing plant COMTs and in the process simplified the original assay as well by obviating the need for adenosine deaminase in the assay, and simultaneously converting an end-point assay into a continuous one. Our assay has been used to kinetically characterize recombinant sorghum COMT (Bmr-12) a key enzyme involved in cell wall lignification, and analyze COMT activity in maturing tillers from switchgrass plants. Data indicated that the calculated K(m) and V(max) values for the recombinant sorghum COMT using different substrates in the fluorescent assay were similar to published values for COMT enzymes from other plant species. Native COMT activity was greatest in internodes at the top of a tiller and declined in the more basal internodes. This new assay should have broad applicability for characterizing COMTs and potentially other plant methlytransferases that utilize ado-met as a methyl donor.


Assuntos
Metiltransferases/análise , Plantas/enzimologia , Espectrometria de Fluorescência/métodos , Sequência de Bases , Primers do DNA , Metiltransferases/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA