Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 576: 119008, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31901358

RESUMO

Viral nanoparticles represent potential natural versatile platforms for targeted gene and drug delivery. Improving the efficiency of gene transfer mediated by viral vectors could not only enhance their therapeutic potential, but also contribute to understanding the limitations in interactions of nanoparticles with cells and the development of new therapeutic approaches. In this study, four cell-penetrating peptides (CPPs), cationic octaarginine (R8), histidine-rich peptides (LAH4 and KH27K) and fusogenic peptide (FUSO), are investigated for their effect on infection by mouse polyomavirus (MPyV) or on transduction of reporter genes delivered by MPyV or related viral vectors. Peptides noncovalently associated with viral particles enhance gene transfer (with the exception of FUSO). Removal of cellular heparan sulfates by the heparinase does not significantly change the enhancing potential of CPPs. Instead, CPPs influences the physical state of viral particles: R8 slightly destabilizes the intact virus, KH27K induces its aggregation and LAH4 promotes disassembly and aggregation of the particles that massively and rapidly associate with cells. The findings indicate that peptides acting as transduction-enhancing agents of polyomavirus-based nanoparticles modulate their physical state, which can be an important prerequisite for sensitization of cells and determination of the further fate of viral particles inside cells.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Vetores Genéticos , Polyomavirus/metabolismo , Transdução Genética , Vírion/metabolismo , Animais , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Peptídeos Penetradores de Células/química , Células HEK293 , Humanos , Camundongos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Polyomavirus/genética , Polyomavirus/ultraestrutura , Vírion/genética , Vírion/ultraestrutura
2.
Mol Biol Rep ; 46(4): 4483-4500, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183678

RESUMO

One of the main aims of bone tissue engineering, regenerative medicine and cell therapy is development of an optimal artificial environment (scaffold) that can trigger a favorable response within the host tissue, it is well colonized by resident cells of organism and ideally, it can be in vitro pre-colonized by cells of interest to intensify the process of tissue regeneration. The aim of this study was to develop an effective tool for regenerative medicine, which combines the optimal bone-like scaffold and colonization technique suitable for cell application. Accordingly, this study includes material (physical, chemical and structural) and in vitro biological evaluation of scaffolds prior to in vivo study. Thus, porosity, permeability or elasticity of two types of bone-like scaffolds differing in the ratio of collagen type I and natural calcium phosphate nanoparticles (bCaP) were determined, then analyzes of scaffold interaction with mesenchymal stem cells (MSCs) were performed. Simultaneously, dynamic seeding using a perfusion bioreactor followed by static cultivation was compared with standard static cultivation for the whole period of cultivation. In summary, cell colonization ability was estimated by determination of cell distribution within the scaffold (number, depth and homogeneity), matrix metalloproteinase activity and gene expression analysis of signaling molecules and differentiation markers. Results showed, the used dynamic colonization technique together with the newly-developed collagen-based scaffold with high content of bCaP to be an effective combined tool for producing bone grafts for bone implantology and regenerative medicine.


Assuntos
Fosfatos de Cálcio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Animais , Osso e Ossos/química , Diferenciação Celular , Células Cultivadas , Colágeno/química , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Nanopartículas , Osteogênese/efeitos dos fármacos , Medicina Regenerativa , Suínos , Alicerces Teciduais/química
3.
Histochem Cell Biol ; 148(3): 273-288, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432431

RESUMO

With the development of a wide range of new biomaterials for the sensing of different cell behaviour, it is important to consider whether the cells tested in vitro are in direct contact with the material or whether cell-biomaterial contact is mediated by an interfacial layer of proteins originating from the culture medium or from the cells themselves. Thus, this study describes the differences between the cell adhesion mediated by proteins originating from foetal bovine serum and without the presence of such proteins 2 h following cell seeding exemplarily with different cell types (an osteoblastic cell line, primary fibroblasts, and mesenchymal stem cells). Three of the examined cell types were found to react differently to differing conditions in terms of cell shape, area, and number. Nevertheless, the expression and localization of the various proteins involved in cell adhesion and signalling (CD44, vinculin, talin, actin, focal adhesion kinase, Rho-GTPases and extracellular signal-regulated kinases 1 and 2) were, in general, similar with respect to all the cell types tested, albeit varying according to the presence or absence of serum. Moreover, no classical focal adhesions were formed during cell adhesion without serum proteins, while different signalling pathways were involved in this process. The study systematically describes and discusses the cell adhesion of three different human cell types to a well-known substrate without the presence of external proteins and it is hoped that this knowledge will be subsequently applied in biomaterial applications in which the presence of external proteins is undesirable (e.g. for biosensing purposes).


Assuntos
Proteínas Sanguíneas/farmacologia , Adesão Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Proteínas Sanguíneas/química , Células Cultivadas , Humanos
4.
Eur J Pharm Sci ; 100: 219-229, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28132822

RESUMO

The aim of this study was to develop an osteo-inductive resorbable layer allowing the controlled elution of antibiotics to be used as a bone/implant bioactive interface particularly in the case of prosthetic joint infections, or as a preventative procedure with respect to primary joint replacement at a potentially infected site. An evaluation was performed of the vancomycin release kinetics, antimicrobial efficiency and cytocompatibility of collagen/hydroxyapatite layers containing vancomycin prepared employing different hydroxyapatite concentrations. Collagen layers with various levels of porosity and structure were prepared using three different methods: by means of the lyophilisation and electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite and 10wt% of vancomycin, and by means of the electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite followed by impregnation with 10wt% of vancomycin. The maximum concentration of the released active form of vancomycin characterised by means of HPLC was achieved via the vancomycin impregnation of the electrospun layers, whereas the lowest concentration was determined for those layers electrospun directly from a collagen solution containing vancomycin. Agar diffusion testing revealed that the electrospun impregnated layers exhibited the highest level of activity. It was determined that modification using hydroxyapatite exerts no strong effect on vancomycin evolution. All the tested samples exhibited sufficient cytocompatibility with no indication of cytotoxic effects using human osteoblastic cells in direct contact with the layers or in 24-hour infusions thereof. The results herein suggest that nano-structured collagen-hydroxyapatite layers impregnated with vancomycin following cross-linking provide suitable candidates for use as local drug delivery carriers.


Assuntos
Antibacterianos , Colágeno , Sistemas de Liberação de Medicamentos , Durapatita , Vancomicina , Antibacterianos/administração & dosagem , Antibacterianos/química , Linhagem Celular Tumoral , Colágeno/administração & dosagem , Colágeno/química , Durapatita/administração & dosagem , Durapatita/química , Feminino , Humanos , Masculino , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Osteoblastos/efeitos dos fármacos , Plasma/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Vancomicina/administração & dosagem , Vancomicina/química
5.
Biomed Mater ; 10(6): 065008, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26586611

RESUMO

Nanocomposite scaffolds which aimed to imitate a bone extracellular matrix were prepared for bone surgery applications. The scaffolds consisted of polylactide electrospun nano/sub-micron fibres, a natural collagen matrix supplemented with sodium hyaluronate and natural calcium phosphate nano-particles (bioapatite). The mechanical properties of the scaffolds were improved by means of three different cross-linking agents: N-(3-dimethylamino propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in an ethanol solution (EDC/NHS/EtOH), EDC/NHS in a phosphate buffer saline solution (EDC/NHS/PBS) and genipin. The effect of the various cross-linking conditions on the pore size, structure and mechanical properties of the scaffolds were subsequently studied. In addition, the mass loss, the swelling ratio and the pH of the scaffolds were determined following their immersion in a cell culture medium. Furthermore, the metabolic activity of human mesenchymal stem cells (hMSCs) cultivated in scaffold infusions for 2 and 7 days was assessed. Finally, studies were conducted of cell adhesion, proliferation and penetration into the scaffolds. With regard to the structural stability of the tested scaffolds, it was determined that EDC/NHS/PBS and genipin formed the most effectively cross-linked materials. Moreover, it was discovered that the genipin cross-linked scaffold also provided the best conditions for hMSC cultivation. In addition, the infusions from all the scaffolds were found to be non-cytotoxic. Thus, the genipin and EDC/NHS/PBS cross-linked scaffolds can be considered to be promising biomaterials for further in vivo testing and bone surgery applications.


Assuntos
Substitutos Ósseos/síntese química , Colágeno/química , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/fisiologia , Nanocompostos/química , Alicerces Teciduais , Materiais Biocompatíveis/síntese química , Matriz Óssea/química , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Reagentes de Ligações Cruzadas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Nanocompostos/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA