Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 10650, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606391

RESUMO

Exposure to pesticides such as rotenone is a risk factor for Parkinson's disease. Dopaminergic neurons are especially sensitive to the toxicity of compounds that inhibit the mitochondrial respiratory chain such as rotenone and 1-methyl-4-phenylpyridinium (MPP+). However, there is scarce information on their effects on glia. To evaluate whether these neurotoxicants affect the immune response of glia, primary mouse mixed glial and microglial cultures were treated with interleukin (IL) 4 in the absence and presence of MPP+ or rotenone. Using qRTPCR or western blot, we determined the expression of anti-inflammatory markers, the CD200R1 microglial receptor and its ligand CD200, and genes regulating glycolysis and oxidative metabolism. ATP and lactate levels were additionally determined as an index of cell metabolism. Microglial phagocytosis was also evaluated. MPP+ and rotenone clearly abrogated the IL4-induced expression of anti-inflammatory markers in mixed glial cultures. CD200 and CD200R1 expression and microglia phagocytosis were also affected by the neurotoxicants. Changes in the mRNA expression of the molecules regulating glycolysis and oxidative metabolism, as well as in ATP levels and lactate release suggested that metabolic reprogramming in response to MPP+ and rotenone differs between microglial and mixed glial cultures. These findings support the hypothesis that parkinsonian neurotoxicants may impair brain immune response altering glial cell metabolism.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Antígenos CD/metabolismo , Interleucina-4/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Praguicidas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Feminino , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fagocitose
2.
Cell Death Differ ; 27(2): 509-524, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209363

RESUMO

α-Synuclein is the main component of Lewy bodies, the intracellular protein aggregates representing the histological hallmark of Parkinson's disease. Elevated α-synuclein levels and mutations in SNCA gene are associated with increased risk for Parkinson's disease. Despite this, little is known about the molecular mechanisms regulating SNCA transcription. CCAAT/enhancer binding protein (C/EBP) ß and δ are b-zip transcription factors that play distinct roles in neurons and glial cells. C/EBPß overexpression increases SNCA expression in neuroblastoma cells and putative C/EBPß and δ binding sites are present in the SNCA genomic region suggesting that these proteins could regulate SNCA transcription. Based on these premises, the goal of this study was to determine if C/EBPß and δ regulate the expression of SNCA. We first observed that α-synuclein CNS expression was not affected by C/EBPß deficiency but it was markedly increased in C/EBPδ-deficient mice. This prompted us to characterize further the role of C/EBPδ in SNCA transcription. C/EBPδ absence led to the in vivo increase of α-synuclein in all brain regions analyzed, both at mRNA and protein level, and in primary neuronal cultures. In agreement with this, CEBPD overexpression in neuroblastoma cells and in primary neuronal cultures markedly reduced SNCA expression. ChIP experiments demonstrated C/EBPδ binding to the SNCA genomic region of mice and humans and luciferase experiments showed decreased expression of a reporter gene attributable to C/EBPδ binding to the SNCA promoter. Finally, decreased CEBPD expression was observed in the substantia nigra and in iPSC-derived dopaminergic neurons from Parkinson patients resulting in a significant negative correlation between SNCA and CEBPD levels. This study points to C/EBPδ as an important repressor of SNCA transcription and suggests that reduced C/EBPδ neuronal levels could be a pathogenic factor in Parkinson's disease and other synucleinopathies and C/EBPδ activity a potential pharmacological target for these neurological disorders.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/genética , alfa-Sinucleína/genética , Idoso , Animais , Proteína delta de Ligação ao Facilitador CCAAT/deficiência , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , alfa-Sinucleína/metabolismo
3.
Front Mol Neurosci ; 11: 479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30686998

RESUMO

In the case of Parkinson's disease (PD), epidemiological studies have reported that pesticide exposure is a risk factor for its pathology. It has been suggested that some chemical agents, such as rotenone and paraquat, that inhibit the mitochondrial respiratory chain (in the same way as the PD mimetic toxin 1-methyl-4-phenylpyridinium, MPP+) are involved in the development of PD. However, although the neurotoxic effect of such compounds has been widely reported using in vivo and in vitro experimental approaches, their direct effect on the glial cells remains poorly characterized. In addition, the extent to which these toxins interfere with the immune response of the glial cells, is also underexplored. We used mouse primary mixed glial and microglial cultures to study the effect of MPP+ and rotenone on glial activation, in the absence and the presence of a pro-inflammatory stimulus (lipopolysaccharide plus interferon-γ, LPS+IFN-γ). We determined the mRNA expression of the effector molecules that participate in the inflammatory response (pro-inflammatory cytokines and enzymes), as well as the nitric oxide (NO) and cytokine production. We also studied the phagocytic activity of the microglial cells. In addition, we evaluated the metabolic changes associated with the observed effects, through the measurement of adenosine triphosphate (ATP) production and the expression of genes involved in the control of metabolic pathways. We observed that exposure of the glial cultures to the neurotoxins, especially rotenone, impaired the pro-inflammatory response induced by LPS/IFN-γ. MPP+ and rotenone also impaired the phagocytic activity of the microglial cells, and this effect was potentiated in the presence of LPS/IFN-γ. The deficit in ATP production that was detected, mainly in MPP+ and rotenone-treated mixed glial cultures, may be responsible for the effects observed. These results show that the response of glial cells to a pro-inflammatory challenge is altered in the presence of toxins inhibiting mitochondrial respiratory chain activity, suggesting that the glial immune response is impaired by such agents. This may have relevant consequences for brain function and the central nervous system's (CNS's) response to insults.

4.
Neurobiol Aging ; 34(9): 2110-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23523267

RESUMO

The transcription factor CCAAT/enhancer binding protein δ (C/EBPδ) is expressed in activated astrocytes and microglia and can regulate the expression of potentially detrimental proinflammatory genes. The objective of this study was to determine the role of C/EBPδ in glial activation. To this end, glial activation was analyzed in primary glial cultures and in the central nervous system from wild type and C/EBPδ(-/-) mice. In vitro studies showed that the expression of proinflammatory genes nitric oxide (NO)synthase-2, cyclooxygenase-2, and interleukin (IL)-6 in glial cultures, and the neurotoxicity elicited by microglia in neuron-microglia cocultures, were decreased in the absence of C/EBPδ when cultures were treated with lipopolysaccharide (LPS) and interferon γ, but not with LPS alone. In C/EBPδ(-/-) mice, systemic LPS-induced brain expression of NO synthase-2, tumor necrosis factor-α, IL-1ß, and IL-6 was attenuated. Finally, increased C/EBPδ nuclear expression was observed in microglial cells from amyotrophic lateral sclerosis patients and G93A-SOD1 mice spinal cord. These results demonstrate that C/EBPδ plays a key role in the regulation of proinflammatory gene expression in glial activation and suggest that C/EBPδ inhibition has potential for the treatment of neurodegenerative disorders, in particular, amyotrophic lateral sclerosis.


Assuntos
Astrócitos/patologia , Proteína delta de Ligação ao Facilitador CCAAT/fisiologia , Regulação da Expressão Gênica/genética , Microglia/patologia , Inflamação Neurogênica/genética , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/terapia , Animais , Astrócitos/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/antagonistas & inibidores , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/toxicidade , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Humanos , Interleucina-6/metabolismo , Camundongos , Microglia/metabolismo , Terapia de Alvo Molecular , Inflamação Neurogênica/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Superóxido Dismutase-1
5.
PLoS One ; 7(9): e45227, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028862

RESUMO

Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.


Assuntos
Anti-Inflamatórios/farmacologia , Iminas/farmacologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Linhagem Celular , Técnicas de Cocultura , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Interferon gama/farmacologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/citologia , Microglia/metabolismo , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Cultura Primária de Células
6.
Neurobiol Aging ; 33(9): 2186-99, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22015310

RESUMO

Neuroinflammation is thought to play a pathogenic role in many neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). In this study we demonstrate that the expression of nitric oxide (NO) synthase-2 (NOS2), and cyclooxygenase (COX)-2 induced by lipopolysaccharide (LPS) with interferon-γ is higher in microglial-enriched cultures from G93A-SOD1 mice, an ALS animal model, than from wild type mice. The levels of CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor that regulates proinflammatory gene expression, are also upregulated in activated G93A-SOD1 microglial cells. In vivo, systemic lipopolysaccharide also induces an exacerbated neuroinflammatory response in G93A-SOD1 mice versus wild type mice, with increased expression of glial fibrillary acidic protein (GFAP), CD11b, nitric oxide synthase-2, cyclooxygenase-2, proinflammatory cytokines, and C/EBPß. Finally, we report that C/EBPß is expressed by microglia in the spinal cord of ALS patients. This is the first demonstration to our knowledge of microglial C/EBPß expression in human disease. Altogether these findings indicate that G93A-SOD1 expression results in an exacerbated pattern of neuroinflammation and suggest that C/EBPß is a candidate to regulate the expression of potentially neurotoxic genes in microglial cells in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica/genética , Microglia/patologia , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Interferon-alfa/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Oncogênica p65(gag-jun)/metabolismo , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética
7.
Glia ; 60(4): 526-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22162045

RESUMO

Inflammatory responses mediated by glial cells play a critical role in many pathological situations related to neurodegeneration such as Alzheimer's disease. Tissue plasminogen activator (tPA) is a serine protease which best-known function is fibrinolysis, but it is also involved in many other physiological and pathological events as microglial activation. Here, we found that tPA is required for Aß-mediated microglial inflammatory response and tumor necrosis factor-α release. We further investigated the molecular mechanism responsible for tPA-mediated microglial activation. We found that tPA induces a catalytic-independent rapid and sustained activation of extracellular signal-regulated kinase (ERK)1/2, Jun N-terminal kinase (JNK), Akt, and p38 signaling pathways. Inhibition of ERK1/2 and JNK resulted in a strong inhibition of microglial activation, whereas Akt inhibition led to increased inflammatory response, suggesting specific functions for each signaling pathway in the regulation of microglial activation. Furthermore, we demonstrated that AnnexinA2 and Galectin-1 receptors are involved in tPA signaling and inflammatory response in glial cells. This study provides new evidences supporting that tPA plays a cytokine-like role in glial activation by triggering receptor-mediated intracellular signaling circuits and opens new therapeutic strategies for the treatment of neurological disorders in which neuroinflammation plays a pathogenic role.


Assuntos
Anexina A2/metabolismo , Galectina 1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Galectina 1/deficiência , Técnicas de Inativação de Genes , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Neuroglia/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Ativador de Plasminogênio Tecidual/deficiência , Ativador de Plasminogênio Tecidual/genética , Fator de Necrose Tumoral alfa/genética
8.
J Neurochem ; 115(2): 526-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20722966

RESUMO

The control of neuroinflammation is a potential target to be considered in the treatment of neurodegenerative diseases. It is therefore important to find anti-inflammatory drugs and study new targets that inhibit neuroinflammation. We designed an experimental model of neuroinflammation in vitro to study the anti-inflammatory and neuroprotective effects of the flavonoid chrysin and the involvement of nuclear factor-κB p65 and CCAAT/enhancer binding proteins (C/EBPs) ß and δ transcription factors in its mechanism of action. We used primary cultures of mouse embryonic cortical neurons and cultures of BV2 (murine microglial cell line) or mouse primary microglia. We induced neuronal death in neuronal-BV2/microglial co-cultures using lipopolysaccharide of Escherichia coli and interferon-γ. Chrysin pre-treatment inhibited nitric oxide and tumor necrosis factor-α production, as well as inducible nitric oxide synthase expression in lipopolysaccharide E. coli and interferon-γ-treated microglial cells, but did not affect cyclooxygenase-2 expression. Chrysin pre-treatment also protected neurons against the neurotoxicity induced by reactive microglial cells. These effects were associated to a decrease in C/EBPδ protein level, mRNA expression, and DNA-binding activity, with no effect on C/EBPß and p65 nuclear protein levels or DNA-binding activity, pointing out C/EBPδ as a possible mediator of chrysin effects. Consequently, C/EBPδ is a possible target to act against neuroinflammation in neurodegenerative processes.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura/métodos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Interações Medicamentosas , Embrião de Mamíferos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transfecção/métodos
9.
Glia ; 57(5): 524-34, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18814231

RESUMO

The cdk inhibitor p21(Cip1), also named p21(Cip1/Waf1), is intimately involved in coupling growth arrest to cellular differentiation in several cell types. p21(Cip1) is a multifunctional protein that might regulate cell-cycle progression at different levels. In a recent study, we found no differences in the rate of proliferation between glial cells from wild-type and p21(Cip1-/-) mice. In the present study, we examined differences in glial activation between glial cells from wild-type and p21(Cip1-/-) mice, using mixed glial cultures, microglia-enriched cultures, and astrocyte-enriched cultures. We compared the effect of lipopolysaccharide and two forms (oligomeric and fibrillar) of the 1-42 beta-amyloid peptide on glial activation. We observed an attenuation of nuclear translocation of the nuclear factor kappa-B in p21(Cip1-/-) glial cells, when compared with glial cells from wild-type mice. In contrast, tumor necrosis factor-alpha release was enhanced in p21(Cip1-/-)microglial cells. In addition glial activation induced by lipopolysaccharide and the fibrillar form of the 1-42 beta-amyloid peptide upregulated p21(Cip1). Our results support a role for p21(Cip1) in the activation of glial cells, particularly in microglia.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Microglia/fisiologia , Neuroglia/fisiologia , Peptídeos beta-Amiloides/farmacologia , Análise de Variância , Animais , Western Blotting , Núcleo Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Expressão Gênica , Imuno-Histoquímica , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fragmentos de Peptídeos/farmacologia , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
10.
J Neurochem ; 95(4): 919-29, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16092928

RESUMO

The absence of adenosine A2A receptors, or its pharmacological inhibition, has neuroprotective effects. Experimental data suggest that glial A2A receptors participate in neurodegeneration induced by A2A receptor stimulation. In this study we have investigated the effects of A2A receptor stimulation on control and activated glial cells. Mouse cortical mixed glial cultures (75% astrocytes, 25% microglia) were treated with the A2A receptor agonist CGS21680 alone or in combination with lipopolysaccharide (LPS). CGS21680 potentiated lipopolysaccharide-induced NO release and NO synthase-II expression in a time- and concentration-dependent manner. CGS21680 potentiation of lipopolysaccharide-induced NO release was suppressed by the A2A receptor antagonist ZM-241385 and did not occur on mixed glial cultures from A2A receptor-deficient mice. In mixed glial cultures treated with LPS + CGS21680, the NO synthase-II inhibitor 1400W abolished NO production, and NO synthase-II immunoreactivity was observed only in microglia. Binding experiments demonstrated the presence of A2A receptors on microglial but not on astroglial cultures. However, the presence of astrocytes was necessary for CGS21680 potentiating effect. In light of the reported neurotoxicity of microglial NO synthase-II and the neuroprotection of A2A receptor inhibition, these data suggest that attenuation of microglial NO production could contribute to the neuroprotection afforded by A2A receptor antagonists.


Assuntos
Córtex Cerebral/citologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Receptor A2A de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina , Análise de Variância , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica/métodos , Indóis/farmacologia , Lipopolissacarídeos/farmacologia , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Nitritos/metabolismo , Fenetilaminas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ensaio Radioligante/métodos , Fatores de Tempo , Triazinas/farmacocinética , Triazinas/farmacologia , Triazóis/farmacocinética , Triazóis/farmacologia , Trítio/farmacocinética , Fator de Necrose Tumoral alfa/metabolismo
11.
Glia ; 49(1): 52-8, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15390102

RESUMO

We have studied possible differences in glial activation between cells from wild-type and p21Cip1-/- mice. We compared the effect of serum mitogenic stimulation on proliferation rate and on the total number of glial cells after 7 days of culture. No differences between wild-type and p21Cip1-/- glial cells were observed. We also compared the effect of lipopolysaccharide (LPS) from Escherichia coli, an agent widely used to induce glial activation. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) release, and nuclear factor kappa-B (NF-kappaB) activation were evaluated as indicators of glial activation. We observed an attenuation of NO release and NF-kappaB activation in p21Cip1-/- glial cells when compared with glial cells from wild-type mice. In contrast, TNF-alpha release was enhanced in p21Cip1-/- glia. These results suggest that the cell cycle inhibitor p21Cip1 plays a role in the inflammatory response induced by LPS.


Assuntos
Proteínas de Ciclo Celular/genética , Encefalite/genética , Gliose/genética , NF-kappa B/metabolismo , Neuroglia/metabolismo , Óxido Nítrico/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Inibidor de Quinase Dependente de Ciclina p21 , Regulação para Baixo/genética , Encefalite/metabolismo , Gliose/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/fisiologia
12.
Glia ; 44(3): 183-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14603460

RESUMO

Microglia can be isolated with high purity but low yield by shaking off loosely adherent cells from mixed glial cultures. Here we describe a new technique for isolating microglia with an average yield close to 2,000,000 microglial cells/mouse pup, more than five times higher than that of the shaking method. Confluent mixed glial cultures are subjected to mild trypsinization (0.05-0.12%) in the presence of 0.2-0.5 mM EDTA and 0.5-0.8 mM Ca2+. This results in the detachment of an intact layer of cells containing virtually all the astrocytes, leaving undisturbed a population of firmly attached cells identified as >98% microglia. These almost pure microglial preparations can be kept in culture for weeks and show proliferation and phagocytosis. Treatment with macrophage colony-stimulating factor and lipopolysaccharide, alone or in the presence of interferon gamma, induces typical microglial responses in terms of proliferation, morphological changes, nuclear factor-kappaB translocation, NO, and tumor necrosis alpha release and phagocytosis. This method allows for the preparation of highly enriched mouse or rat microglial cultures with ease and reproducibility. Because of its high yield, it can be especially convenient when high amounts of microglial protein/mRNA are required or in cases in which the starting material is limited, such as microglial cultures from transgenic animals.


Assuntos
Separação Celular/métodos , Microglia/citologia , Tripsina/farmacologia , Animais , Encéfalo/citologia , Contagem de Células , Divisão Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fagocitose , Fator de Necrose Tumoral alfa/metabolismo
13.
J Neurochem ; 85(6): 1455-67, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12787065

RESUMO

Apolipoprotein E (apoE) and apoJ are lipid carriers produced in the brain primarily by glial cells. A variety of glial-activating stimuli induce a parallel upregulation of both apolipoproteins expression in vivo and in vitro. To further characterize the cell type and mechanisms by which apoE and apoJ expression are upregulated in activated glia, mixed glial cultures from neonatal rat cortex were treated with the endotoxin lipopolysaccharide (LPS). LPS induced dose-dependent increases in apoJ and decreases in apoE expression and secretion with maximum effects at 1-10 ng/mL and 0.1-1 microg/mL, respectively. Experiments with enriched astroglial and microglial cultures demonstrated that apoE and apoJ expression are predominantly microglial and astroglial, respectively. Given the pivotal role that nuclear factor-kappa B (NF-kappa B) plays in glial activation, we assessed its possible role in mediating apoE and apoJ expression by activated glia. LPS robustly increased NF-kappa B activation in mixed glial cultures. Two NF-kappa B inhibitors, aspirin (10 mM) and MG-132 (0.1 microM), blocked basal apoE and apoJ secretion as well as LPS-induced apoJ secretion. These data demonstrate that glial apoE and apoJ expression are independently regulated by LPS in microglia and astroglia, respectively, and that activated microglia are the predominant source of apoE in mixed glial cultures. The transcription factor NF-kappa B appears to be a critical mediator of LPS-stimulated apoJ expression from astroglia.


Assuntos
Apolipoproteínas E/biossíntese , Astrócitos/metabolismo , Glicoproteínas/biossíntese , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Chaperonas Moleculares/biossíntese , Animais , Animais Recém-Nascidos , Apolipoproteínas E/genética , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Clusterina , Técnicas de Cocultura , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Glicoproteínas/genética , Microglia/citologia , Microglia/efeitos dos fármacos , Chaperonas Moleculares/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
14.
J Neurochem ; 85(3): 651-61, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12694391

RESUMO

Activation of glial cells is a prevalent response to neuronal damage in brain disease and ageing, with potential neuroprotective and neurotoxic consequences. We were interested in studying the role of glial activation on dopaminergic neurons of the substantia nigra in an animal model of Parkinson's disease. Thus, we evaluated the effect of a pre-existing glial activation on the dopaminergic neuronal death induced by striatal infusion of 6-hydroxydopamine. We established a model of local glial activation by stereotaxic infusion of interleukin-1beta in the substantia nigra of adult rats. Interleukin-1beta (20 ng) induced a marked activation of astrocytes at days 2, 5 and 10, revealed by heat-shock protein 27 and glial fibrillary acid protein immunohistochemistry, but did not affect the microglial markers OX-42 and heat-shock proteins 32 or 47. Intranigral infusion of interleukin-1beta 5 days before a striatal injection of 6-hydroxydopamine significantly protected nigral dopaminergic cell bodies, but not striatal terminals from the 6-hydroxydopamine lesion. Also, in the animals pre-treated with interleukin-1beta, a significant prevention of 6-hydroxydopamine-induced reduction of adjusting steps, but not of 6-hydroxydopamine-induced amphetamine rotations, were observed. These data show the characterization of a novel model of local astroglial activation in the substantia nigra and support the hypothesis of a neuroprotective role of activated astrocytes in Parkinson's disease.


Assuntos
Astrócitos/efeitos dos fármacos , Proteínas de Choque Térmico , Interleucina-1/administração & dosagem , Neurônios/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Substância Negra/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Contagem de Células , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Choque Térmico HSP27 , Infusões Parenterais , Masculino , Atividade Motora/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Ratos , Ratos Sprague-Dawley , Técnicas Estereotáxicas , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/biossíntese
15.
J Neurobiol ; 52(4): 343-51, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12210101

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6-hydroxydopamine (6-OHDA) transiently increased c-Ret and GFRalpha1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c-Ret and GFRalpha1 was downregulated. GFRalpha2 expression was differentially regulated, as it decreased only 6 days after 6-OHDA injection. Triple-labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6-OHDA lesion.


Assuntos
Proteínas de Drosophila , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Substância Negra/metabolismo , Adrenérgicos/farmacologia , Animais , Modelos Animais de Doenças , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hibridização In Situ , Masculino , Neurônios/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/fisiopatologia , Proteínas Proto-Oncogênicas c-ret , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA