Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398280

RESUMO

Purpose: Metabolism within the tumor microenvironment (TME) represents an increasing area of interest to understand glioma initiation and progression. Stable isotope tracing is a technique critical to the study of tumor metabolism. Cell culture models of this disease are not routinely cultured under physiologically relevant nutrient conditions and do not retain cellular heterogeneity present in the parental TME. Moreover, in vivo, stable isotope tracing in intracranial glioma xenografts, the gold standard for metabolic investigation, is time consuming and technically challenging. To provide insights into glioma metabolism in the presence of an intact TME, we performed stable isotope tracing analysis of patient-derived, heterocellular Surgically eXplanted Organoid (SXO) glioma models in human plasma-like medium (HPLM). Methods: Glioma SXOs were established and cultured in conventional media or transitioned to HPLM. We evaluated SXO cytoarchitecture and histology, then performed spatial transcriptomic profiling to identify cellular populations and differential gene expression patterns. We performed stable isotope tracing with 15N2-glutamine to evaluate intracellular metabolite labeling patterns. Results: Glioma SXOs cultured in HPLM retain cytoarchitecture and cellular constituents. Immune cells in HPLM-cultured SXOs demonstrated increased transcription of immune-related signatures, including innate immune, adaptive immune, and cytokine signaling programs. 15N isotope enrichment from glutamine was observed in metabolites from diverse pathways, and labeling patterns were stable over time. Conclusion: To enable ex vivo, tractable investigations of whole tumor metabolism, we developed an approach to conduct stable isotope tracing in glioma SXOs cultured under physiologically relevant nutrient conditions. Under these conditions, SXOs maintained viability, composition, and metabolic activity while exhibiting increased immune-related transcriptional programs.

2.
Trends Cancer ; 9(8): 624-635, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37173188

RESUMO

Nucleotides are substrates for multiple anabolic pathways, most notably DNA and RNA synthesis. Since nucleotide synthesis inhibitors began to be used for cancer therapy in the 1950s, our understanding of how nucleotides function in tumor cells has evolved, prompting a resurgence of interest in targeting nucleotide metabolism for cancer therapy. In this review, we discuss recent advances that challenge the idea that nucleotides are mere building blocks for the genome and transcriptome and highlight ways that these metabolites support oncogenic signaling, stress resistance, and energy homeostasis in tumor cells. These findings point to a rich network of processes sustained by aberrant nucleotide metabolism in cancer and reveal new therapeutic opportunities.


Assuntos
Neoplasias , Nucleotídeos , Humanos , Nucleotídeos/metabolismo , Nucleotídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , DNA
3.
Cancer Cell ; 40(9): 957-972.e10, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985342

RESUMO

Diffuse midline glioma (DMG) is a uniformly fatal pediatric cancer driven by oncohistones that do not readily lend themselves to drug development. To identify druggable targets for DMG, we conducted a genome-wide CRISPR screen that reveals a DMG selective dependency on the de novo pathway for pyrimidine biosynthesis. This metabolic vulnerability reflects an elevated rate of uridine/uracil degradation that depletes DMG cells of substrates for the alternate salvage pyrimidine biosynthesis pathway. A clinical stage inhibitor of DHODH (rate-limiting enzyme in the de novo pathway) diminishes uridine-5'-phosphate (UMP) pools, generates DNA damage, and induces apoptosis through suppression of replication forks-an "on-target" effect, as shown by uridine rescue. Matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy imaging demonstrates that this DHODH inhibitor (BAY2402234) accumulates in the brain at therapeutically relevant concentrations, suppresses de novo pyrimidine biosynthesis in vivo, and prolongs survival of mice bearing intracranial DMG xenografts, highlighting BAY2402234 as a promising therapy against DMGs.


Assuntos
Glioma , Pirimidinas , Animais , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Camundongos , Uridina/metabolismo , Uridina/farmacologia
4.
Cancer Cell ; 40(9): 939-956.e16, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985343

RESUMO

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.


Assuntos
Neoplasias Encefálicas , Glioma , Leucemia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Inibidores Enzimáticos/uso terapêutico , Glioma/tratamento farmacológico , Glioma/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Salicilanilidas , Triazóis
5.
Cancer Inform ; 21: 11769351221100754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652106

RESUMO

The creation of patient-derived cancer organoids represents a key advance in preclinical modeling and has recently been applied to a variety of human solid tumor types. However, conventional methods used to assess in vivo tumor tissue treatment response are poorly suited for the evaluation of cancer organoids because they are time-intensive and involve tissue destruction. To address this issue, we established a suite of 3-dimensional patient-derived glioma organoids, treated them with chemoradiotherapy, stained organoids with non-toxic cell dyes, and imaged them using a rapid laser scanning confocal microscopy method termed "Apex Imaging." We then developed and tested a fragmentation algorithm to quantify heterogeneity in the topography of the organoids as a potential surrogate marker of viability. This algorithm, SSDquant, provides a 3-dimensional visual representation of the organoid surface and a numerical measurement of the sum-squared distance (SSD) from the derived mass center of the organoid. We tested whether SSD scores correlate with traditional immunohistochemistry-derived cell viability markers (cellularity and cleaved caspase 3 expression) and observed statistically significant associations between them using linear regression analysis. Our work describes a quantitative, non-invasive approach for the serial measurement of patient-derived cancer organoid viability, thus opening new avenues for the application of these models to studies of cancer biology and therapy.

6.
Clin Cancer Res ; 28(10): 2180-2195, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247901

RESUMO

PURPOSE: To investigate the antitumor activity of a mitochondrial-localized HSP90 inhibitor, Gamitrinib, in multiple glioma models, and to elucidate the antitumor mechanisms of Gamitrinib in gliomas. EXPERIMENTAL DESIGN: A broad panel of primary and temozolomide (TMZ)-resistant human glioma cell lines were screened by cell viability assays, flow cytometry, and crystal violet assays to investigate the therapeutic efficacy of Gamitrinib. Seahorse assays were used to measure the mitochondrial respiration of glioma cells. Integrated analyses of RNA sequencing (RNAseq) and reverse phase protein array (RPPA) data were performed to reveal the potential antitumor mechanisms of Gamitrinib. Neurospheres, patient-derived organoids (PDO), cell line-derived xenografts (CDX), and patient-derived xenografts (PDX) models were generated to further evaluate the therapeutic efficacy of Gamitrinib. RESULTS: Gamitrinib inhibited cell proliferation and induced cell apoptosis and death in 17 primary glioma cell lines, 6 TMZ-resistant glioma cell lines, 4 neurospheres, and 3 PDOs. Importantly, Gamitrinib significantly delayed the tumor growth and improved survival of mice in both CDX and PDX models in which tumors were either subcutaneously or intracranially implanted. Integrated computational analyses of RNAseq and RPPA data revealed that Gamitrinib exhibited its antitumor activity via (i) suppressing mitochondrial biogenesis, OXPHOS, and cell-cycle progression and (ii) activating the energy-sensing AMP-activated kinase, DNA damage, and stress response. CONCLUSIONS: These preclinical findings established the therapeutic role of Gamitrinib in gliomas and revealed the inhibition of mitochondrial biogenesis and tumor bioenergetics as the primary antitumor mechanisms in gliomas.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Neuro Oncol ; 24(4): 612-623, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850183

RESUMO

BACKGROUND: Historically, creating patient-derived models of lower-grade glioma (LGG) has been challenging, contributing to few experimental platforms that support laboratory-based investigations of this disease. Although organoid modeling approaches have recently been employed to create in vitro models of high-grade glioma (HGG), it is unknown whether this approach can be successfully applied to LGG. METHODS: In this study, we developed an optimized protocol for the establishment of organoids from LGG primary tissue samples by utilizing physiologic (5%) oxygenation conditions and employed it to produce the first known suite of these models. To assess their fidelity, we surveyed key biological features of patient-derived organoids using metabolic, genomic, histologic, and lineage marker gene expression assays. RESULTS: Organoid models were created with a success rate of 91% (n = 20/22) from primary tumor samples across glioma histological subtypes and tumor grades (WHO Grades 1-4), and a success rate of 87% (13/15) for WHO Grade 1-3 tumors. Patient-derived organoids recapitulated stemness, proliferative, and tumor-stromal composition profiles of their respective parental tumor specimens. Cytoarchitectural, mutational, and metabolic traits of parental tumors were also conserved. Importantly, LGG organoids were maintained in vitro for weeks to months and reanimated after biobanking without loss of integrity. CONCLUSIONS: We report an efficient method for producing faithful in vitro models of LGG. New experimental platforms generated through this approach are well positioned to support preclinical studies of this disease, particularly those related to tumor immunology, tumor-stroma interactions, identification of novel drug targets, and personalized assessments of treatment response profiles.


Assuntos
Neoplasias Encefálicas , Glioma , Bancos de Espécimes Biológicos , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Organoides/patologia
8.
Nat Commun ; 12(1): 4860, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381026

RESUMO

Cancer metabolism is rewired to support cell survival in response to intrinsic and environmental stressors. Identification of strategies to target these adaptions is an area of active research. We previously described a cytosolic aspartate aminotransaminase (GOT1)-driven pathway in pancreatic cancer used to maintain redox balance. Here, we sought to identify metabolic dependencies following GOT1 inhibition to exploit this feature of pancreatic cancer and to provide additional insight into regulation of redox metabolism. Using pharmacological methods, we identify cysteine, glutathione, and lipid antioxidant function as metabolic vulnerabilities following GOT1 withdrawal. We demonstrate that targeting any of these pathways triggers ferroptosis, an oxidative, iron-dependent form of cell death, in GOT1 knockdown cells. Mechanistically, we reveal that GOT1 inhibition represses mitochondrial metabolism and promotes a catabolic state. Consequently, we find that this enhances labile iron availability through autophagy, which potentiates the activity of ferroptotic stimuli. Overall, our study identifies a biochemical connection between GOT1, iron regulation, and ferroptosis.


Assuntos
Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Ferroptose , Neoplasias Pancreáticas/metabolismo , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Cistina/metabolismo , Ferroptose/efeitos dos fármacos , Glutationa/biossíntese , Humanos , Ferro/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/patologia
9.
Mol Cell ; 79(3): 368-370, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763225

RESUMO

A recent study (Sulkowski et al., 2020) reveals that oncometabolites, which are produced by metabolic gene mutations in many cancers, sensitize cells to PARP inhibition by antagonizing histone demethylation and obscuring epigenetic marks that are necessary for efficient DNA repair.


Assuntos
Dano ao DNA , Neoplasias/genética , Reparo do DNA , Epigênese Genética , Epigenômica , Humanos
10.
Cancer Res ; 77(17): 4579-4588, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655787

RESUMO

Mutational signatures in cancer genomes have implicated the APOBEC3 cytosine deaminases in oncogenesis, possibly offering a therapeutic vulnerability. Elevated APOBEC3B expression has been detected in solid tumors, but expression of APOBEC3A (A3A) in cancer has not been described to date. Here, we report that A3A is highly expressed in subsets of pediatric and adult acute myelogenous leukemia (AML). We modeled A3A expression in the THP1 AML cell line by introducing an inducible A3A gene. A3A expression caused ATR-dependent phosphorylation of Chk1 and cell-cycle arrest, consistent with replication checkpoint activation. Further, replication checkpoint blockade via small-molecule inhibition of ATR kinase in cells expressing A3A led to apoptosis and cell death. Although DNA damage checkpoints are broadly activated in response to A3A activity, synthetic lethality was specific to ATR signaling via Chk1 and did not occur with ATM inhibition. Our findings identify elevation of A3A expression in AML cells, enabling apoptotic sensitivity to inhibitors of the DNA replication checkpoint and suggesting it as a candidate biomarker for ATR inhibitor therapy. Cancer Res; 77(17); 4579-88. ©2017 AACR.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Citidina Desaminase/metabolismo , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas/metabolismo , Adulto , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Quinase 1 do Ponto de Checagem/metabolismo , Criança , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
11.
Biol Blood Marrow Transplant ; 23(5): 820-829, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28192251

RESUMO

Adult stem cell transplantation (SCT) patients with graft-versus-host-disease (GVHD) exhibit significant disruptions in gut microbial communities. These changes are associated with higher overall mortality and appear to be driven by specific antibiotic therapies. It is unclear whether pediatric SCT patients who develop GVHD exhibit similar antibiotic-induced gut microbiota community changes. Here, we show that pediatric SCT patients (from Children's Medical Center Dallas, n = 8, and Cincinnati Children's Hospital, n = 7) who developed GVHD showed a significant decline, up to 10-log fold, in gut anti-inflammatory Clostridia (AIC) compared with those without GVHD. In fact, the development of GVHD is significantly associated with this AIC decline and with cumulative antibiotic exposure, particularly antibiotics effective against anaerobic bacteria (P = .003, Firth logistic regression analysis). Using metagenomic shotgun sequencing analysis, we were able to identify specific commensal bacterial species, including AIC, that were significantly depleted in GVHD patients. We then used a preclinical GVHD model to verify our clinical observations. Clindamycin depleted AIC and exacerbated GVHD in mice, whereas oral AIC supplementation increased gut AIC levels and mitigated GVHD in mice. Together, these data suggest that an antibiotic-induced AIC depletion in the gut microbiota is associated with the development of GVHD in pediatric SCT patients.


Assuntos
Antibacterianos/efeitos adversos , Doença Enxerto-Hospedeiro/induzido quimicamente , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Adolescente , Animais , Anti-Inflamatórios/efeitos adversos , Criança , Pré-Escolar , Clindamicina/efeitos adversos , Clindamicina/farmacologia , Clostridium/patogenicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/microbiologia , Humanos , Lactente , Camundongos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA