Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163074

RESUMO

The question of whether exosome lipids can be considered as potential cancer biomarkers faces our current limited knowledge of their composition. This is due to the difficulty in isolating pure exosomes, the variability of the biological sources from which they are extracted, and the uncertainty of the methods for lipid characterization. Here, we present a procedure to isolate exosomes and obtain a deep, repeatable, and rapid phospholipid (PL) composition of their lipid extracts, from embryonic murine fibroblasts (NIH-3T3 cell line) and none (B16-F1) and high (B16-F10) metastatic murine skin melanoma cells. The analytical method is based on High Performance Thin-Layer Chromatography with Ultraviolet and fluorescence densitometry and coupled to Electrospray (ESI)-tandem Mass Spectrometry (MS). Under the conditions described in this work, separation and determination of PL classes, (sphingomyelins, SM; phosphatidylcholines, PC; phosphatidylserines, PS; and phosphatidylethanolamines, PE) were achieved, expressed as µg PL/100 µg exosome protein, obtained by bicinchoninic acid assay (BCA). A detailed structural characterization of molecular species of each PL class was performed by simultaneous positive and negative ESI-MS and MS/MS directly from the chromatographic plate, thanks to an elution-based interface.


Assuntos
Cromatografia em Camada Fina/métodos , Exossomos/metabolismo , Fibroblastos/metabolismo , Melanoma Experimental/patologia , Fosfolipídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Melanoma Experimental/metabolismo , Camundongos , Células NIH 3T3 , Fosfolipídeos/análise
2.
J Chromatogr A ; 1638: 461895, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33477028

RESUMO

Identification of 19 molecular species of globotriaosylceramides (Gb3) in extracts from a Fabry's plasma patient and a healthy control was performed by High-Performance Thin-Layer Chromatography (HPTLC)-densitometry and online coupling to Mass Spectrometry (MS). Separation was carried out on LiChrospher plates using Automated Multiple Development (AMD). Densitometry was performed on twin plates by combining detection in the visible at 550 nm, through previous on-plate orcinol derivatization, and by Ultraviolet 190 nm, using a non-impregnated plate. The latter was directly coupled to an ion-trap mass spectrometer through an automated elution-based interface. Gb3 molecular species, which were identified by HPTLC- Electrospray Mass Spectrometry (+)-MS and confirmed by MS/MS or HPTLC-Atmospheric Pressure Chemical Ionization Mass Spectrometry (+)-MS, are: five isoforms of saturated Gb3; seven isoforms of methylated Gb3; and seven species with two additional double bonds. Twelve of these species were previously reported as biomarkers of Fabry's lysosomal disorder using a Liquid Chromatography-MS-based method, and the other seven are structurally similar, closely related to them. Saturated Gb3 isoforms migrated on LiChrospher plate in one of the separated peaks corresponding to the migration zone of ceramide trihexosides standard. Instead, methylated and unsaturated Gb3 species co-migrated with sphingomyelin species. Ion intensity ESI-MS profiles show that saturated Gb3 species in Fabry's plasma were in higher concentration than in control sample. Before applying the Thin-Layer Chromatography (TLC)-MS interface on HPTLC separated peaks, its positioning precision was first studied using ceramide tri-hexosides as model compound. This provided information on Gb3 peak broadening and splitting during its migration.


Assuntos
Cromatografia em Camada Fina/métodos , Densitometria , Doença de Fabry/sangue , Triexosilceramidas/sangue , Biomarcadores/sangue , Doença de Fabry/diagnóstico , Humanos , Metilação , Isoformas de Proteínas/sangue , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray , Esfingolipídeos/sangue , Espectrometria de Massas em Tandem , Triexosilceramidas/análise , Triexosilceramidas/química
3.
New Phytol ; 201(1): 155-167, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24015802

RESUMO

Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Raízes de Plantas/metabolismo , Escopoletina/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica , Genes de Plantas , Redes e Vias Metabólicas , Mutação , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA