Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Res Struct Biol ; 6: 100108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106461

RESUMO

S-adenosylmethionine (SAM) is a ubiquitous co-factor that serves as a donor for methylation reactions and additionally serves as a donor of other functional groups such as amino and ribosyl moieties in a variety of other biochemical reactions. Such versatility in function is enabled by the ability of SAM to be recognized by a wide variety of protein molecules that vary in their sequences and structural folds. To understand what gives rise to specific SAM binding in diverse proteins, we set out to study if there are any structural patterns at their binding sites. A comprehensive analysis of structures of the binding sites of SAM by all-pair comparison and clustering, indicated the presence of 4 different site-types, only one among them being well studied. For each site-type we decipher the common minimum principle involved in SAM recognition by diverse proteins and derive structural motifs that are characteristic of SAM binding. The presence of the structural motifs with precise three-dimensional arrangement of amino acids in SAM sites that appear to have evolved independently, indicates that these are winning arrangements of residues to bring about SAM recognition. Further, we find high similarity between one of the SAM site types and a well known ATP binding site type. We demonstrate using in vitro experiments that a known SAM binding protein, HpyAII.M1, a type 2 methyltransferase can bind and hydrolyse ATP. We find common structural motifs that explain this, further supported through site-directed mutagenesis. Observation of similar motifs for binding two of the most ubiquitous ligands in multiple protein families with diverse sequences and structural folds presents compelling evidence at the molecular level in favour of convergent evolution.

2.
Biochemistry ; 59(49): 4663-4680, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33269926

RESUMO

The plant Sesbania mosaic virus [a (+)-ssRNA sobemovirus] VPg protein is intrinsically disordered in solution. For the virus life cycle, the VPg protein is essential for replication and for polyprotein processing that is carried out by a virus-encoded protease. The nuclear magnetic resonance (NMR)-derived tertiary structure of the protease-bound VPg shows it to have a novel tertiary structure with an α-ß-ß-ß topology. The quaternary structure of the high-affinity protease-VPg complex (≈27 kDa) has been determined using HADDOCK protocols with NMR (residual dipolar coupling, dihedral angle, and nuclear Overhauser enhancement) restraints and mutagenesis data as inputs. The geometry of the complex is in excellent agreement with long-range orientational restraints such as residual dipolar couplings and ring-current shifts. A "vein" of aromatic residues on the protease surface is pivotal for the folding of VPg via intermolecular edge-to-face π···π stacking between Trp271 and Trp368 of the protease and VPg, respectively, and for the CH···π interactions between Leu361 of VPg and Trp271 of the protease. The structure of the protease-VPg complex provides a molecular framework for predicting sites of important posttranslational modifications such as RNA linkage and phosphorylation and a better understanding of the coupled folding upon binding of intrinsically disordered proteins. The structural data presented here augment the limited structural data available on viral proteins, given their propensity for structural disorder.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Vírus de Plantas/química , Proteínas Virais/química , Sequência de Aminoácidos , Aminoácidos Aromáticos/química , Fenômenos Biofísicos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Vírus de Plantas/genética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Eletricidade Estática , Proteínas Virais/genética
3.
Viruses ; 12(9)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957699

RESUMO

Pepper vein banding virus (PVBV) is a distinct species in the Potyvirus genus which infects economically important plants in several parts of India. Like other potyviruses, PVBV encodes multifunctional proteins, with several interaction partners, having implications at different stages of the potyviral infection. In this review, we summarize the functional characterization of different PVBV-encoded proteins with an emphasis on their interaction partners governing the multifunctionality of potyviral proteins. Intrinsically disordered domains/regions of these proteins play an important role in their interactions with other proteins. Deciphering the function of PVBV-encoded proteins and their interactions with cognitive partners will help in understanding the putative mechanisms by which the potyviral proteins are regulated at different stages of the viral life-cycle. This review also discusses PVBV virus-like particles (VLPs) and their potential applications in nanotechnology. Further, virus-like nanoparticle-cell interactions and intracellular fate of PVBV VLPs are also discussed.


Assuntos
Doenças das Plantas/virologia , Potyvirus/fisiologia , Proteínas Virais/metabolismo , Citoplasma , Índia , Poliproteínas/genética , Poliproteínas/metabolismo , Potyvirus/genética , Veias , Proteínas Virais/genética
4.
Nanomedicine (Lond) ; 14(10): 1247-1265, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31084385

RESUMO

Aim: Plant virus-like particles (VLPs) have emerged as a novel platform for delivery of drugs/antibodies. The aim of the present investigation is to establish the entry mechanism of flexuous rod-shaped virus particles into mammalian cells. Methods: Far-Western blot analysis, pull-down and ELISA were used to characterize vimentin and Hsp60 interaction with VLPs. The mode/kinetics of internalization of VLPs was deciphered using pharmacological inhibitors/endosomal markers. Results & discussion: The flexuous rod-shaped VLPs of Pepper vein banding virus (PVBV) enter HeLa and HepG2 cells via cell-surface proteins: vimentin and Hsp60, respectively. VLPs internalize via different modes of endocytosis in HeLa, HepG2 cells and are biodegradable. Vimentin and Hsp60 could be potential epithelial ligands that facilitate targeting of nanoparticles to tumor cells.


Assuntos
Endocitose , Células Epiteliais/metabolismo , Nanopartículas/metabolismo , Potyvirus/fisiologia , Animais , Transporte Biológico , Chaperonina 60/metabolismo , Citoplasma/metabolismo , Células HeLa , Células Hep G2 , Humanos , Cinética , Vimentina/metabolismo , Vírion/fisiologia , Internalização do Vírus
5.
Virology ; 524: 18-31, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138835

RESUMO

VPg-Pro is involved in polyprotein processing, therefore its regulation is important for a successful potyviral infection. We report here that the N-terminal disordered region of VPg forms the domain of interaction with NIa-Pro. This region is also demonstrated to be responsible for modulating the protease activity of VPg-Pro, both in cis and trans. The disordered nature of VPg is elicited by the N-terminal 22 residues as removal of these residues (∆N22 VPg) brought about gross structural and conformational changes in the protein. Interestingly, ∆N22 VPg gained ATPase activity which suggested the presence of autoinhibitory motif within the N-terminal region of VPg. The autoinhibition gets relieved upon interaction of VPg with NIa-Pro or removal of the inhibitory motif. Thus, the N-terminal 22 residues of VPg qualify as molecular recognition feature (MoRF), regulating both protease and ATPase activity of VPg-Pro as well as forming the domain of interaction with other viral/host proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Endopeptidases/metabolismo , Potyvirus/enzimologia , Proteínas Virais/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Endopeptidases/química , Endopeptidases/genética , Potyvirus/genética , Domínios Proteicos , Proteínas Recombinantes , Proteínas Virais/química , Proteínas Virais/genética
6.
FEBS Lett ; 590(8): 1187-99, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27001161

RESUMO

RNA helicases have not been identified among negative sense RNA viruses. In this study, it is shown that Nonstructural protein (NSs) of Groundnut bud necrosis virus (GBNV) acts as a Mg(2+) - and ATP-dependent bipolar RNA helicase. Biophysical and biochemical analysis of the deletion mutants (NΔ124 NSs, CΔ80 NSs) revealed that both the N- and C-terminal residues are required for substrate binding, oligomerization and helicase activity, but are dispensable for ATPase activity. Interestingly, NSs could enhance the translation of RNA (~ 10-fold) independent of its helicase activity. This is the first report of a RNA helicase from negative strand RNA viruses.


Assuntos
Vírus de Plantas/enzimologia , Biossíntese de Proteínas , RNA Helicases/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Fenômenos Biofísicos , Proteínas Mutantes/isolamento & purificação , RNA Helicases/química , RNA Helicases/genética , RNA Viral/metabolismo , Deleção de Sequência , Ressonância de Plasmônio de Superfície , Proteínas não Estruturais Virais/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo
7.
Sci Rep ; 6: 21803, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905902

RESUMO

The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the ßH-ßI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.


Assuntos
Anticorpos Monoclonais/metabolismo , Portadores de Fármacos/metabolismo , Animais , Anticorpos Monoclonais/química , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Melanoma Experimental , Camundongos , Vírus do Mosaico , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sesbania/virologia , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Vírion
8.
FEBS Open Bio ; 4: 362-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918050

RESUMO

Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp-p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, CΔ43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp.

9.
Arch Virol ; 159(3): 413-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24036956

RESUMO

Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn(2+) ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.


Assuntos
Proteínas do Capsídeo/metabolismo , Ilarvirus/fisiologia , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Virossomos/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Análise Mutacional de DNA , Escherichia coli/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zinco/metabolismo , Dedos de Zinco
10.
FEBS J ; 280(20): 5039-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23927374

RESUMO

Diaminopropionate ammonialyase (DAPAL), a fold-type II pyridoxal 5'-phosphate-dependent enzyme, catalyzes the α,ß-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-type II enzymes.


Assuntos
Aminoácidos/metabolismo , Amônia-Liases/metabolismo , Salmonella typhimurium/enzimologia , Aminoácidos/genética , Amônia-Liases/química , Amônia-Liases/genética , Biocatálise , Dissulfetos/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Espectrofotometria Ultravioleta , Especificidade por Substrato
11.
Biochem Biophys Res Commun ; 427(1): 113-8, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22989753

RESUMO

Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity.


Assuntos
Adenosina Trifosfatases/química , Capsicum/virologia , Potyvirus/enzimologia , Proteínas Virais/química , Sequência de Aminoácidos , Análise Mutacional de DNA , Dados de Sequência Molecular , Potyvirus/genética , Proteínas Virais/genética
12.
PLoS One ; 7(5): e36267, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22574144

RESUMO

Salmonella typhimurium DCyD (StDCyD) is a fold type II pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the degradation of D-Cys to H(2)S and pyruvate. It also efficiently degrades ß-chloro-D-alanine (ßCDA). D-Ser is a poor substrate while the enzyme is inactive with respect to L-Ser and 1-amino-1-carboxy cyclopropane (ACC). Here, we report the X-ray crystal structures of StDCyD and of crystals obtained in the presence of D-Cys, ßCDA, ACC, D-Ser, L-Ser, D-cycloserine (DCS) and L-cycloserine (LCS) at resolutions ranging from 1.7 to 2.6 Å. The polypeptide fold of StDCyD consisting of a small domain (residues 48-161) and a large domain (residues 1-47 and 162-328) resembles other fold type II PLP dependent enzymes. The structures obtained in the presence of D-Cys and ßCDA show the product, pyruvate, bound at a site 4.0-6.0 Å away from the active site. ACC forms an external aldimine complex while D- and L-Ser bind non-covalently suggesting that the reaction with these ligands is arrested at Cα proton abstraction and transimination steps, respectively. In the active site of StDCyD cocrystallized with DCS or LCS, electron density for a pyridoxamine phosphate (PMP) was observed. Crystals soaked in cocktail containing these ligands show density for PLP-cycloserine. Spectroscopic observations also suggest formation of PMP by the hydrolysis of cycloserines. Mutational studies suggest that Ser78 and Gln77 are key determinants of enzyme specificity and the phenolate of Tyr287 is responsible for Cα proton abstraction from D-Cys. Based on these studies, a probable mechanism for the degradation of D-Cys by StDCyD is proposed.


Assuntos
Biocatálise , Cistationina gama-Liase/química , Cistationina gama-Liase/metabolismo , Análise Mutacional de DNA , Salmonella typhimurium/enzimologia , Aminoácidos Cíclicos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ciclosserina/metabolismo , Cistationina gama-Liase/genética , Ligantes , Modelos Moleculares , Fosfato de Piridoxal/metabolismo , Especificidade por Substrato , beta-Alanina/análogos & derivados , beta-Alanina/metabolismo
13.
PLoS One ; 7(2): e31190, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355344

RESUMO

Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.


Assuntos
Agrobacterium/virologia , Genoma Viral , Vírus do Mosaico/patogenicidade , Poliproteínas/genética , RNA Viral/genética , Sesbania/virologia , Replicação Viral/fisiologia , Agrobacterium/genética , Sequência de Bases , Northern Blotting , Western Blotting , Células Cultivadas , DNA Complementar/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Sesbania/genética , Proteínas Virais/genética
14.
PLoS One ; 5(3): e9757, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20305786

RESUMO

Groundnut bud necrosis virus (GBNV), a member of genus Tospovirus in the family Bunyaviridae, infects a large number of leguminosae and solanaceae plants in India. With a view to elucidate the function of nonstructural protein, NSs encoded by the small RNA genome (S RNA), the NSs protein of GBNV- tomato (Karnataka) was over-expressed in E. coli and purified by Ni-NTA chromatography. The purified rNSs protein exhibited an RNA stimulated NTPase activity. Further, this activity was metal ion dependent and was inhibited by adenosine 5' (beta, gamma imido) triphosphate, an ATP analog. The rNSs could also hydrolyze dATP. Interestingly, in addition to the NTPase and dATPase activities, the rNSs exhibited ATP independent 5' RNA/DNA phosphatase activity that was completely inhibited by AMP. The 5' alpha phosphate could be removed from ssDNA, ssRNA, dsDNA and dsRNA thus confirming that rNSs has a novel 5' alpha phosphatase activity. K189A mutation in the Walker motif A (GxxxxGKT) resulted in complete loss of ATPase activity, but the 5' phosphatase activity was unaffected. On the other hand, D159A mutation in the Walker motif B (DExx) resulted in partial loss of both the activities. These results demonstrate for the first time that NSs is a bifunctional enzyme, which could participate in viral movement, replication or in suppression of the host defense mechanism.


Assuntos
Proteínas não Estruturais Virais/química , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromatografia em Camada Fina , Dicroísmo Circular , Primers do DNA/química , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligonucleotídeos Antissenso/genética , Plantas/enzimologia , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência/métodos , Tospovirus/enzimologia
15.
J Biol Chem ; 279(31): 32159-69, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15163663

RESUMO

The NIa proteinase from pepper vein banding virus (PVBV) is a sequence-specific proteinase required for processing of viral polyprotein in the cytoplasm. It accumulates in the nucleus of the infected plant cell and forms inclusion bodies. The function of this protein in the nucleus is not clear. The purified recombinant NIa proteinase was active, and the mutation of the catalytic residues His-46, Asp-81, and Cys-151 resulted in complete loss of activity. Most interesting, the PVBV NIa proteinase exhibited previously unidentified activity, namely nonspecific double-stranded DNA degradation. This DNase activity of the NIa proteinase showed an absolute requirement for Mg(2+). Site-specific mutational analysis showed that of the three catalytic residues, Asp-81 was the crucial residue for DNase activity. Mutation of His-46 and Cys-151 had no effect on the DNase activity, whereas mutant D81N was partially active, and D81G was completely inactive. Based on kinetic analysis and molecular modeling, a metal ion-dependent catalysis similar to that observed in other nonspecific DNases is proposed. Similar results were obtained with glutathione S-transferase-fused PVBV NIa proteinase and tobacco etch virus NIa proteinase, confirming that the DNase function is an intrinsic property of potyviral NIa proteinase. The NIa protein present in the infected plant nuclear extract also showed the proteinase and the DNase activities, suggesting that the PVBV NIa protein that accumulates in the nucleus late in the infection cycle might serve to degrade the host DNA. Thus the dual function of the NIa proteinase could play an important role in the life cycle of the virus.


Assuntos
Potyvirus/enzimologia , Proteínas Virais/química , Proteínas Virais/fisiologia , Ácido Aspártico/química , Núcleo Celular/metabolismo , Cisteína/química , Citoplasma/metabolismo , DNA/química , Análise Mutacional de DNA , Desoxirribonucleases/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Endopeptidases , Escherichia coli/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde , Histidina/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Magnésio/química , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Mutação Puntual , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Cloreto de Sódio/farmacologia , Solanum tuberosum/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA