Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920686

RESUMO

The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying cancer cells. Whether the DNA damage response to this type of damage is different from that elicited in response to low-LET radiation, and if and how it can be targeted to increase treatment efficacy, is not fully understood. Although several preclinical studies have reported radiosensitizing effects when proton or carbon ion irradiation is combined with inhibitors of, e.g., PARP, ATR, ATM, or DNA-PKcs, further exploration is required to determine the most effective treatments. Here, we examine what is known about repair pathway choice in response to high- versus low-LET irradiation, and we discuss the effects of inhibitors of these pathways when combined with protons and carbon ions. Additionally, we explore the potential effects of DNA repair inhibitors on antitumor immune signaling upon proton and carbon ion irradiation. Due to the reduced effect on healthy tissue and better immune preservation, particle therapy may be particularly well suited for combination with DNA repair inhibitors.


Assuntos
Dano ao DNA , Reparo do DNA , Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Animais , Transferência Linear de Energia
2.
J Funct Biomater ; 15(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921542

RESUMO

Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.

3.
Sci Rep ; 13(1): 14878, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689817

RESUMO

New therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module. The combination of IONPDOX with ion carbon or photon irradiation increased the lethal effects of irradiation alone in correlation with the induction of MN. Alterations in the hyperspectral images and spectral profiles of nuclei reflected the CHS cell biological modifications following the treatments, highlighting possible new spectroscopic markers of cancer therapy effects. These outcomes showed that the proposed combined treatment is promising in improving CHS radiotherapy.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Íons , Biomarcadores , Carbono , Condrossarcoma/radioterapia , Doxorrubicina
4.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046623

RESUMO

Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.

5.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982965

RESUMO

Mitochondria-nucleus communication during stress dictates cellular fate with consequences on the etiopathology of multiple age-related diseases. Impaired mitochondrial quality control through loss of function of the mitochondrial protease HtrA2 associates with accumulation of damaged mitochondria and triggers the integrated stress response, implicating the transcription factor CHOP. Here we have employed a combined model of impaired mitochondria quality control, namely HtrA2 loss of function, and/or integrated stress response, namely CHOP loss of function, and genotoxicity to address the distinctive roles of these cellular components in modulating intracellular and intercellular responses. The genotoxic agents employed were cancer therapeutic agents such as irradiation with X-ray and protons or treatment with the radiomimetic bleomycin. The irradiation had an enhanced effect in inducing DNA damage in cells with CHOP loss of function, while the bleomycin treatment induced more DNA damage in all the transgenic cells as compared to the control. The genetic modifications impaired the transmission of DNA damage signalling intercellularly. Furthermore, we have dissected the signalling pathways modulated by irradiation in selected genotypes with RNA sequencing analysis. We identified that loss of HtrA2 and CHOP function, respectively, lowers the threshold where irradiation may induce the activation of innate immune responses via cGAS-STING; this may have a significant impact on decisions for combined therapeutic approaches for various diseases.


Assuntos
Mitocôndrias , Transdução de Sinais , Mitocôndrias/metabolismo , Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Dano ao DNA , DNA Mitocondrial/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768525

RESUMO

Involvement of 3D tumor cell models in the in vitro biological testing of novel nanotechnology-based strategies for cancer management can provide in-depth information on the real behavior of tumor cells in complex biomimetic architectures. Here, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the controlled delivery of a doxorubicin chemotherapeutic substance (IONPDOX), and to enhance cytotoxicity of photon radiation therapy. The biological effects of nanoparticles and 150 kV X-rays were evaluated on both 2D and 3D cell models of normal human keratinocytes (HaCaT) and tumor cells-human cervical adenocarcinoma (HeLa) and human squamous carcinoma (FaDu)-through cell survival. In all 2D cell models, nanoparticles were similarly internalized in a peri-nuclear pattern, but resulted in different survival capabilities following radiation treatment. IONP on normal keratinocytes showed a protective effect, but a cytotoxic effect for cancer cells. In 3D tumor cell models, IONPDOX were able to penetrate the cell spheroids towards the hypoxic areas. However, IONPDOX and 150 kV X-rays led to a dose-modifying factor DMFSF=0.1 = 1.09 ± 0.1 (200 µg/mL IONPDOX) in HeLa spheroids, but to a radioprotective effect in FaDu spheroids. Results show that the proposed treatment is promising in the management of cervical adenocarcinoma.


Assuntos
Adenocarcinoma , Antineoplásicos , Nanopartículas , Neoplasias do Colo do Útero , Feminino , Humanos , Doxorrubicina/farmacologia , Esferoides Celulares , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555305

RESUMO

Two novel fluorescent mesoporous silica-based hybrid materials were obtained through the covalent grafting of [4-hydrazinyl-7-nitrobenz-[2,1,3-d]-oxadiazole (NBDH) and N1-(7-nitrobenzo[c][1,2,5]-oxadiazol-4-yl) benzene-1,2-diamine (NBD-PD), respectively, inside the channels of mesoporous silica SBA-15. The presence of fluorescent organic compounds (nitrobenzofurazan derivatives) was confirmed by infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG), and fluorescence spectroscopy. The nitrogen physisorption analysis showed that the nitrobenzofurazan derivatives were distributed uniformly on the internal surface of SBA-15, the immobilization process having a negligible effect on the structure of the support. Their antioxidant activity was studied by measuring the ability to reduce free radicals DPPH (free radical scavenging activity), in order to formulate potential applications of the materials obtained. Cytotoxicity of the newly synthesized materials, SBA-NBDH and SBA-NBD-PD, was evaluated on human B16 melanoma cells. The morphology of these cells, internalization and localization of the investigated materials in melanoma and fibroblast cells were examined through fluorescence imaging. The viability of B16 (3D) spheroids after treatment with SBA-NBDH and SBA-NBD-PD was evaluated using MTS assay. The results showed that both materials induced a selective antiproliferative effect, reducing to various degrees the viability of melanoma cells. The observed effect was enhanced with increasing concentration. SBA-NBD-PD exhibited a higher antitumor effect compared to SBA-NBDH starting with a concentration of 125 µg/mL. In both cases, a significantly more pronounced antiproliferative effect on tumor cells compared to normal cells was observed. The viability of B16 spheroids dropped by 40% after treatment with SBA-NBDH and SBA-NBD-PD at 500 µg/mL concentration, indicating a clear cytotoxic effect of the tested compounds. These results suggest that both newly synthesized biomaterials could be promising antitumor agents for applications in cancer therapy.


Assuntos
Antineoplásicos , Melanoma , Humanos , Dióxido de Silício/química , Corantes , Antineoplásicos/farmacologia , Antineoplásicos/química
8.
Pharmaceutics ; 14(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36145625

RESUMO

Iron oxide nanoparticles (IONPs) have been extensively used in different biomedical applications due to their biocompatibility and magnetic properties. However, different functionalization approaches have been developed to improve their time-life in the systemic circulation. Here, we have synthesized IONPs using a modified Massart method and functionalized them in situ with polyethylene glycol with different molecular weights (20 K and 35 K). The resulting nanoparticles were characterized in terms of morphology, structure, and composition using transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In vivo biodistribution was evaluated in Balb/c mice, the presence of IONP being evidenced through histopathological investigations. IONP morphological characterization showed a change in shape (from spherical to rhombic) and size with molecular weight, while structural characterization proved the obtaining of highly crystalline samples of spinel structured cubic face-centered magnetite. In vivo biodistribution in a mice model proved the biocompatibility of all of the IONP samples. All NPs were cleared through the liver, spleen, and lungs, while bare IONPs were also evidenced in kidneys.

9.
Nanomaterials (Basel) ; 12(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683796

RESUMO

In this paper, novel drug delivery systems (DDS) were designed based on graphene oxide (GO) as nanocarrier, loaded with two natural substances (quercetin (Qu) and juglone (Ju)) at different concentrations. The chemical structure and morphology of the synthesized GO-based materials were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Raman spectroscopy. The antibacterial activity was evaluated against standard strains, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, and Candida albicans ATCC 10231. Results demonstrated excellent antimicrobial activity, with a 5 log reduction of E. coli and a 1 log to 3.04 log reduction of S. aureus populations. Reduction rates were above 90%. Biocompatibility tests were also performed on GO-based materials, and the results showed biocompatible behavior for both L929 fibroblast cell line and BT474 breast cancer cells at lower concentrations. The identity of Qu and Ju was demonstrated by matrix-assisted laser desorption/ionization (MALDI) analysis, showing the compounds' mass with high accuracy. In addition, specific properties of GO made it a versatile matrix for the MALDI analysis. The results of this study indicated that GO-based platforms may be suitable for applications in many areas for the effective and beneficial use of hydrophobic compounds such as Ju and Qu.

10.
Cancers (Basel) ; 13(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885045

RESUMO

The prostate is one of the most clinically accessible internal organs of the genitourinary tract in men. For decades, the only method of screening for prostate cancer (PCa) has been digital rectal examination of 1990s significantly increased the incidence and prevalence of PCa and consequently the morbidity and mortality associated with this disease. In addition, the different types of oncology treatment methods have been linked to specific complications and side effects, which would affect the patient's quality of life. In the first two decades of the 21st century, over-detection and over-treatment of PCa patients has generated enormous costs for health systems, especially in Europe and the United States. The Prostate Specific Antigen (PSA) is still the most common and accessible screening blood test for PCa, but with low sensibility and specificity at lower values (<10 ng/mL). Therefore, in order to avoid unnecessary biopsies, several screening tests (blood, urine, or genetic) have been developed. This review analyzes the most used bioumoral markers for PCa screening and also those that could predict the evolution of metastases of patients diagnosed with PCa.

11.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360718

RESUMO

Besides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells. The conditioned medium was directly analyzed by mass spectrometry in order to identify candidate bystander factors involved in the signal transmission. The proteomic analysis of the bystander chondrocytes highlighted 20 proteins spots that were significantly modified at low dose, implicating several cellular mechanisms, such as oxidative stress responses, cellular motility, and exosomes pathways. In addition, the secretomic analysis revealed that the abundance of 40 proteins in the conditioned medium of 0.1 Gy irradiated chondrosarcoma cells was significantly modified, as compared with the conditioned medium of non-irradiated cells. A large cluster of proteins involved in stress granules and several proteins involved in the cellular response to DNA damage stimuli were increased in the 0.1 Gy condition. Several of these candidates and cellular mechanisms were confirmed by functional analysis, such as 8-oxodG quantification, western blot, and wound-healing migration tests. Taken together, these results shed new lights on the complexity of the radiation-induced bystander effects and the large variety of the cellular and molecular mechanisms involved, including the identification of a new potential actor, namely the stress granules.


Assuntos
Neoplasias Ósseas/metabolismo , Efeito Espectador/efeitos da radiação , Condrócitos/metabolismo , Condrossarcoma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteômica , Raios X , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral , Condrossarcoma/radioterapia , Humanos
12.
Pharmaceutics ; 13(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201978

RESUMO

The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release.

13.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202550

RESUMO

In this study, we determined the potential of polyethylene glycol-encapsulated iron oxide nanoparticles (IONPCO) for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to enhance the cytotoxic effects of ionizing radiation. The biological effects of IONP and X-ray irradiation (50 kV and 6 MV) were determined in HeLa cells using the colony formation assay (CFA) and detection of γH2AX foci. Data are presented as mean ± SEM. IONP were efficiently internalized by HeLa cells. IONPCO radiomodulating effect was dependent on nanoparticle concentration and photon energy. IONPCO did not radiosensitize HeLa cells with 6 MV X-rays, yet moderately enhanced cellular radiosensitivity to 50 kV X-rays (DMFSF0.1 = 1.13 ± 0.05 (p = 0.01)). IONPDOX did enhance the cytotoxicity of 6 MV X-rays (DMFSF0.1 = 1.3 ± 0.1; p = 0.0005). IONP treatment significantly increased γH2AX foci induction without irradiation. Treatment of HeLa cells with IONPCO resulted in a radiosensitizing effect for low-energy X-rays, while exposure to IONPDOX induced radiosensitization compared to IONPCO in cells irradiated with 6 MV X-rays. The effect did not correlate with the induction of γH2AX foci. Given these results, IONP are promising candidates for the controlled delivery of DOX to enhance the cytotoxic effects of ionizing radiation.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Compostos Férricos , Nanopartículas Metálicas , Tolerância a Radiação/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Portadores de Fármacos/química , Compostos Férricos/química , Células HeLa/efeitos dos fármacos , Células HeLa/patologia , Células HeLa/efeitos da radiação , Células HeLa/ultraestrutura , Humanos , Nanopartículas Metálicas/química , Radiação Ionizante
14.
Mater Sci Eng C Mater Biol Appl ; 123: 112028, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812643

RESUMO

Two novel graphene oxide-benzofuran derivatives composites were obtained through the covalent immobilization of [4-hydrazinyl-7nitrobenz-[2,1,3-d]-oxadiazole (NBDH) and respectively, N1-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)benzene-1,2-diamine (NBD-PD), on graphene oxide. This covalent functionalization was achieved by activating the carboxylic groups on the surface of graphene oxide by the reaction with thionyl chloride followed by coupling with the amino group of benzofurazane derivatives to obtain the NBD derivatives grafted on graphene oxide. The formation of new materials was check by Raman spectroscopy, fluorescence, infrared spectroscopy and X-ray photoelectron spectroscopy, thermal analysis, scanning electron microscopy, and elemental mapping. The antimicrobial effect of the new composites was evaluated on Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, both on planktonic and adherent biofilm populations. The cytotoxic effects of the materials on human colon cancer HCT-116 cell line and the normal human fibroblast BJ cell line were evaluated by investigating cell viability and membrane integrity. Apoptosis and colony forming ability of tumor cells were also investigated following exposure to new materials. The biological results of this study have shown that the new materials have potential in combating biofilm formation and also, the tested materials induced cytotoxicity in human colon cancer HCT-116 cell line with limited effects on normal BJ fibroblasts, suggesting their antitumor potential.


Assuntos
Grafite , Nanocompostos , Antibacterianos/farmacologia , Benzoxazóis , Humanos
15.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007844

RESUMO

This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Doxorrubicina/química , Endocitose/efeitos dos fármacos , Endocitose/efeitos da radiação , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Osteossarcoma/patologia , Osteossarcoma/radioterapia , Radiação Ionizante
16.
Technol Cancer Res Treat ; 18: 1533033819871309, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495269

RESUMO

Chondrosarcomas are malignant tumors of the cartilage that are chemoresistant and radioresistant to X-rays. This restricts the treatment options essential to surgery. In this study, we investigated the sensitivity of chondrosarcoma to X-rays and C-ions in vitro. The sensitivity of 4 chondrosarcoma cell lines (SW1353, CH2879, OUMS27, and L835) was determined by clonogenic survival assays and cell cycle progression. In addition, biomarkers of DNA damage responses were analyzed in the SW1353 cell line. Chondrosarcoma cells showed a heterogeneous sensitivity toward irradiation. Chondrosarcoma cell lines were more sensitive to C-ions exposure compared to X-rays. Using D10 values, the relative biological effectiveness of C-ions was higher (relative biological effectiveness = 5.5) with cells resistant to X-rays (CH2879) and lower (relative biological effectiveness = 3.7) with sensitive cells (L835). C-ions induced more G2 phase blockage and micronuclei in SW1353 cells as compared to X-rays with the same doses. Persistent unrepaired DNA damage was also higher following C-ions irradiation. These results indicate that chondrosarcoma cell lines displayed a heterogeneous response to conventional radiation treatment; however, treatment with C-ions irradiation was more efficient in killing chondrosarcoma cells, compared to X-rays.


Assuntos
Condrossarcoma/radioterapia , Transferência Linear de Energia , Radiografia , Raios X/efeitos adversos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Condrossarcoma/patologia , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Radiação Ionizante , Eficiência Biológica Relativa
17.
Med Phys ; 46(10): e726-e734, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31357243

RESUMO

Recently developed short-pulsed laser sources garner high dose-rate beams such as energetic ions and electrons, x rays, and gamma rays. The biological effects of laser-generated ion beams observed in recent studies are different from those triggered by radiation generated using classical accelerators or sources, and this difference can be used to develop new strategies for cancer radiotherapy. High-power lasers can now deliver particles in doses of up to several Gy within nanoseconds. The fast interaction of laser-generated particles with cells alters cell viability via distinct molecular pathways compared to traditional, prolonged radiation exposure. The emerging consensus of recent literature is that the differences are due to the timescales on which reactive molecules are generated and persist, in various forms. Suitable molecular markers have to be adopted to monitor radiation effects, addressing relevant endogenous molecules that are accessible for investigation by noninvasive procedures and enable translation to clinical imaging. High sensitivity has to be attained for imaging molecular biomarkers in cells and in vivo to follow radiation-induced functional changes. Signal-enhanced MRI biomarkers enriched with stable magnetic nuclear isotopes can be used to monitor radiation effects, as demonstrated recently by the use of dynamic nuclear polarization (DNP) for biomolecular observations in vivo. In this context, nanoparticles can also be used as radiation enhancers or biomarker carriers. The radiobiology-relevant features of high dose-rate secondary radiation generated using high-power lasers and the importance of noninvasive biomarkers for real-time monitoring the biological effects of radiation early on during radiation pulse sequences are discussed.


Assuntos
Biomarcadores/metabolismo , Lasers , Imagem Molecular/métodos , Doses de Radiação , Humanos , Fenômenos Magnéticos , Fótons
18.
J Photochem Photobiol B ; 197: 111519, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31228688

RESUMO

Gold nanoparticles of comparable size were synthetized using honey mediated green method (AuNPs@honey) and citrate mediated Turkevich method (AuNPs@citrate). Their colloidal behavior in two cell media DMEM and RPMI, both supplemented with 10% FBS, was systematically investigated with different characterization techniques in order to evidence how the composition of the media influences their stability and the development of protein/NP complex. We revealed the formation of the protein corona which individually covers the nanoparticles in RPMI media, like a dielectric spacer according to UV-Vis spectroscopy, while DMEM promotes more abundant agglomerations, clustering together the nanoparticles, according to TEM investigations. In order to evaluate the biological impact of nanoparticles, B16 melanoma and L929 mouse fibroblasts cells were used to carry out the viability assays. Generally, the L929 cells were more sensitive than B16 cells to the presence of gold nanoparticles. Measurements of cell viability, proliferation and apoptotic activities of B16 cells indicated that the effects induced by AuNPs@honey were slightly similar to those induced by AuNPs@citrate, however, the toxic response improved in the L929 fibroblast cells following the treatment with AuNPs@honey within the same concentration range from 1 µg/ml to 15 µg/ml for 48 h. Results showed that honey mediated synthesis generates nanoparticles with reduced toxicity trends depending on the cell type, concentration of nanoparticles and exposure time toward various biomedical applications.


Assuntos
Citratos/química , Ouro/química , Mel/análise , Nanopartículas Metálicas/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Camundongos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
19.
Int J Mol Sci ; 20(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013625

RESUMO

The neuron-specific Elav-like Hu RNA-binding proteins were described to play an important role in neuronal differentiation and plasticity by ensuring the post-transcriptional control of RNAs encoding for various proteins. Although Elav-like Hu proteins alterations were reported in diabetes or neuropathy, little is known about the regulation of neuron-specific Elav-like Hu RNA-binding proteins in sensory neurons of dorsal root ganglia (DRG) due to the diabetic condition. The goal of our study was to analyze the gene and protein expression of HuB, HuC, and HuD in DRG sensory neurons in diabetes. The diabetic condition was induced in CD-1 adult male mice with single-intraperitoneal injection of streptozotocin (STZ, 150 mg/kg), and 8-weeks (advanced diabetes) after induction was quantified the Elav-like proteins expression. Based on the glycemia values, we identified two types of responses to STZ, and mice were classified in STZ-resistant (diabetic resistant, glycemia < 260 mg/dL) and STZ-sensitive (diabetic, glycemia > 260 mg/dL). Body weight measurements indicated that 8-weeks after STZ-induction of diabetes, control mice have a higher increase in body weight compared to the diabetic and diabetic resistant mice. Moreover, after 8-weeks, diabetic mice (19.52 ± 3.52 s) have longer paw withdrawal latencies in the hot-plate test than diabetic resistant (11.36 ± 1.92 s) and control (11.03 ± 1.97 s) mice, that correlates with the installation of warm hypoalgesia due to the diabetic condition. Further on, we evidenced the decrease of Elav-like gene expression in DRG neurons of diabetic mice (Elavl2, 0.68 ± 0.05 fold; Elavl3, 0.65 ± 0.01 fold; Elavl4, 0.53 ± 0.07 fold) and diabetic resistant mice (Ealvl2, 0.56 ± 0.07 fold; Elavl3, 0.32 ± 0.09 fold) compared to control mice. Interestingly, Elav-like genes have a more accentuated downregulation in diabetic resistant than in diabetic mice, although hypoalgesia was evidenced only in diabetic mice. The Elav-like gene expression changes do not always correlate with the Hu protein expression changes. To detail, HuB is upregulated and HuD is downregulated in diabetic mice, while HuB, HuC, and HuD are downregulated in diabetic resistant mice compared to control mice. To resume, we demonstrated HuD downregulation and HuB upregulation in DRG sensory neurons induced by diabetes, which might be correlated with altered post-transcriptional control of RNAs involved in the regulation of thermal hypoalgesia condition caused by the advanced diabetic neuropathy.


Assuntos
Proteína Semelhante a ELAV 2/genética , Proteína Semelhante a ELAV 3/genética , Proteína Semelhante a ELAV 4/genética , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Células Receptoras Sensoriais/metabolismo , Animais , Biomarcadores , Glicemia , Peso Corporal , Diabetes Mellitus Experimental , Proteína Semelhante a ELAV 2/metabolismo , Proteína Semelhante a ELAV 3/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Gânglios Espinais/fisiopatologia , Imuno-Histoquímica , Camundongos , Proteínas de Ligação a RNA
20.
J Cell Commun Signal ; 13(3): 343-356, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30903603

RESUMO

While the dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at low and high linear energy transfer (LET), mechanisms and effectors of cell-to-cell communication stay unclear and highly dependent of cell type. In the present study, we investigated the capacity of chondrocytes in responding to bystander factors released by chondrosarcoma cells irradiated at different doses (0.05 to 8 Gy) with X-rays and C-ions. Following a medium transfer protocol, cell survival, proliferation and DNA damages were quantified in bystander chondrocytes. The bystander factors secreted by chondrosarcoma cells were characterized. A significant and major RIBE response was observed in chondrocyte cells (T/C-28a2) receiving conditioned medium from chondrosarcoma cells (SW1353) irradiated with 0.1 Gy of X-rays and 0.05 Gy of C-ions, resulting in cell survivals of 36% and 62%, respectively. Micronuclei induction in bystander cells was observed from the same low doses. The cell survival results obtained by clonogenic assays were confirmed using impedancemetry. The bystander activity was vanished after a heat treatment or a dilution of the conditioned media. The cytokines which are well known as bystander factors, TNF-α and IL-6, were increased as a function of doses and LET according to an ELISA multiplex analysis. Together, the results demonstrate that irradiated chondrosarcoma cells can communicate stress factors to non-irradiated chondrocytes, inducing a wide and specific bystander response related to both doses and LET.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA