RESUMO
We have developed an autologous transplantation method using adipose tissue-derived multi-lineage progenitor cells (ADMPCs) as a method of periodontal tissue regeneration that can be adapted to severe periodontal disease. Our previous clinical study confirmed the safety of autologous transplantation of ADMPCs and demonstrated its usefulness in the treatment of severe periodontal disease. However, in the same clinical study, we found that the fibrin gel used as the scaffold material might have caused gingival recession and impaired tissue regeneration in some patients. Carbonate apatite has a high space-making capacity and has been approved in Japan for periodontal tissue regeneration. In this study, we selected carbonate apatite as a candidate scaffold material for ADMPCs and conducted an in vitro examination of its effect on the cellular function of ADMPCs. We further performed autologous ADMPC transplantation with carbonate apatite as the scaffold material in a model of one-wall bone defects in beagles and then analyzed the effect on periodontal tissue regeneration. The findings showed that carbonate apatite did not affect the cell morphology of ADMPCs and that it promoted proliferation. Moreover, no effect on secretor factor transcription was found. The results of the in vivo analysis confirmed the space-making capacity of carbonate apatite, and the acquisition of significant new attachment was observed in the group involving ADMPC transplantation with carbonate apatite compared with the group involving carbonate apatite application alone. Our results demonstrate the usefulness of carbonate apatite as a scaffold material for ADMPC transplantation.
Assuntos
Regeneração Óssea , Doenças Periodontais , Humanos , Animais , Cães , Células-Tronco , Tecido Adiposo , Transplante Autólogo , Doenças Periodontais/terapia , Regeneração Tecidual Guiada Periodontal/métodosRESUMO
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting periodontal tissue. Current periodontal regenerative therapies have unsatisfactory efficacy; therefore, periodontal tissue engineering might be established by developing new cell-based therapies. In this study, we evaluated the safety and efficacy of adipose tissue-derived multi-lineage progenitor cells (ADMPC) autologous transplantation for periodontal tissue regeneration in humans. We conducted an open-label, single-arm exploratory phase I clinical study in which 12 periodontitis patients were transplanted with autologous ADMPCs isolated from subcutaneous adipose tissue. Each patient underwent flap surgery during which autologous ADMPCs were transplanted into the bone defect with a fibrin carrier material. Up to 36 weeks after transplantation, we performed a variety of clinical examinations including periodontal tissue inspection and standardized dental radiographic analysis. A 36-week follow-up demonstrated no severe transplantation-related adverse events in any cases. ADMPC transplantation reduced the probing pocket depth, improved the clinical attachment level, and induced neogenesis of alveolar bone. Therapeutic efficiency was observed in 2- or 3-walled vertical bone defects as well as more severe periodontal bone defects. These results suggest that autologous ADMPC transplantation might be an applicable therapy for severe periodontitis by inducing periodontal regeneration.
Assuntos
Perda do Osso Alveolar , Periodontite , Tecido Adiposo/cirurgia , Perda do Osso Alveolar/cirurgia , Regeneração Óssea , Seguimentos , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Periodontite/cirurgia , Células-Tronco , Transplante AutólogoRESUMO
BACKGROUND: This cross-sectional study performed to clarify the relationship between periodontal disease and non-communicable diseases (NCDs), such as obesity, diabetes mellitus, impaired glucose tolerance (IGT), chronic obstructive pulmonary disease (COPD), and atherosclerotic cardiovascular disease (ASCVD) by introducing dental examinations into the annual health examinations conducted by Japanese companies, and to highlights the importance of a medical system that connects dental and medical professionals. METHODS: A total of 1.022 Hitachi Ltd. employees were enrolled in this cross-sectional study. We examined correlations and odds ratios (ORs) between the dental and overall health of employees using stratification and multiple logistic regression analyses based on the periodontal health indicators, general health indicators, and occlusal force. RESULTS: The adjusted OR of PPD for obesity (OR, 1.42; 95% confidence interval [CI], 1.09-1.84; p = 0.009), IGT (OR, 1.48; 95% CI, 1.00-2.20; p = 0.049), and COPD (OR, 1.38; 95% CI, 1.02-1.88; p = 0.038) significantly differed. The adjusted OR of body mass index (OR, 1.28; 95% CI 1.15-1.42; p < 0.001), haemoglobin A1C (HbA1c) (OR, 4.34; 95% CI, 1.89-9.98; p < 0.001), fasting blood glucose (FBG) levels (OR, 1.08; 95% CI 1.04-1.11; p < 0.001), postbronchodilator forced expiratory volume in one second/forced vital capacity ratio (%FEV1) (OR, 0.95; 95% CI 0.91-1.00; p = 0.031) and smoking (OR, 2.32; 95% CI 1.62-3.33; p < 0.001) for severe periodontal disease also significantly differed. Occlusal force was significantly reduced in employees aged 50-59 years compared to those aged 40-49 years. Both PPD, HbA1c, FBG levels were significantly associated with occlusal force among employees with moderate/severe periodontitis. PPD was significantly associated with occlusal force among employees with and moderate COPD, and ASCVD. %FEV1 was significantly associated with occlusal force among employees with IGT. CONCLUSIONS: This cross-sectional study revealed mutual relationships among periodontal disease, NCDs, and occlusal force on Japanese corporate workers. We demonstrated that a comprehensive, regional healthcare system centred on annual integrated dental and physical health examinations in the workplace will benefit employees and positively impact corporate health insurance.
Assuntos
Intolerância à Glucose , Doenças Periodontais , Estudos Transversais , Hemoglobinas Glicadas/análise , Pesquisas sobre Atenção à Saúde , Humanos , Doenças Periodontais/complicações , Doenças Periodontais/epidemiologiaRESUMO
BACKGROUND: Cellular responses to hypoxia regulate various biological events, including angiogenesis and extracellular matrix metabolism. Collagen is a major component of the extracellular matrix in periodontal tissues and its coordinated production is essential for tissue homeostasis. In this study, we investigated the effects of hypoxia on collagen production in human gingival fibroblasts (HGFs) and human periodontal ligament cells (HPDLs). METHODS: HGFs and HPDLs were cultured under either normoxic (20% O2 ) or hypoxic (1% O2 ) conditions. Nuclear expression of hypoxia-inducible factor-1α (HIF-1α) was determined by western blotting. Peri-cellular expression of type I collagen was examined by immunocytochemistry analysis. Synthesis of type I collagen was evaluated by measuring the concentration of procollagen type I C-peptide (PIP) in culture supernatant using enzyme-linked immunosorbent assay. Expression of collagen hydroxylase enzymes prolyl 4-hydroxylase alpha polypeptide 1 (P4HA1) and 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was determined by RT-qPCR and western blotting. The roles of these enzymes were analyzed using siRNA transfection. RESULTS: Cultivation under hypoxic conditions stimulated type I collagen production via HIF-1α in both cell types. Interestingly, hypoxic conditions did not affect collagen 1a1 or 1a2 gene expression but upregulated that of P4HA1 and PLOD2. Additionally, suppressing P4HA1 significantly decreased the levels of hypoxia-induced procollagen type I C-peptide, a product of stable triple helical collagen, in the supernatant. In contrast, PLOD2 suppression decreased cross-linked collagen expression in the pericellular region. CONCLUSION: Our results suggest that hypoxia activates collagen synthesis in HGFs and HPDLs by upregulating hydroxylases P4HA1 and PLOD2 in an HIF-1α-dependent manner.
Assuntos
Fibroblastos , Ligamento Periodontal , Hipóxia Celular , Células Cultivadas , Colágeno , Humanos , Hidroxilação , Hipóxia , Subunidade alfa do Fator 1 Induzível por HipóxiaRESUMO
Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.
Assuntos
Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia , Cemento Dentário/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/citologia , Tecido Adiposo/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Cemento Dentário/citologia , Cemento Dentário/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Fibroblast growth factor-2 (FGF-2) regulates a variety of functions of the periodontal ligament (PDL) cell, which is a key player during tissue regeneration following periodontal tissue breakdown by periodontal disease. In this study, we investigated the effects of FGF-2 on the cell migration and related signaling pathways of MPDL22, a mouse PDL cell clone. FGF-2 activated the migration of MPDL22 cells and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and akt. The P13K inhibitors, Wortmannin and LY294002, suppressed both cell migration and akt activation in MPDL22, suggesting that the PI3K/akt pathway is involved in FGF-2-stimulated migration of MPDL22 cells. Moreover, in response to FGF-2, MPDL22 showed increased CD44 expression, avidity to hyaluronan (HA) partly via CD44, HA production and mRNA expression of HA synthase (Has)-1, 2, and 3. However, the distribution of HA molecular mass produced by MPDL22 was not altered by FGF-2 stimulation. Treatment of transwell membrane with HA facilitated the migration of MPDL22 cells and an anti-CD44 neutralizing antibody inhibited it. Interestingly, the expression of CD44 was colocalized with HA on the migrating cells when stimulated with FGF-2. Furthermore, an anti-CD44 antibody and small interfering RNA for CD44 significantly decreased the FGF-2-induced migration of MPDL22 cells. Taken together, PI3K/akt and CD44/HA signaling pathways are responsible for FGF-2-mediated cell motility of PDL cells, suggesting that FGF-2 accelerates periodontal regeneration by regulating the cellular functions including migration, proliferation and modulation of extracellular matrix production.