Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(20): e202217585, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929683

RESUMO

We present an optochemical O2 scavenging system that enables precise spatiotemporal control of the level of hypoxia in living cells simply by adjusting the light intensity in the illuminated region. The system employs rhodamine containing a selenium or tellurium atom as an optochemical oxygen scavenger that rapidly consumes O2 by photochemical reaction with glutathione as a coreductant upon visible light irradiation (560-590 nm) and has a rapid response time, within a few minutes. The glutathione-consuming quantum yields of the system were calculated as about 5 %. The spatiotemporal O2 consuming in cultured cells was visualized with a hypoxia-responsive fluorescence probe, MAR. Phosphorescence lifetime imaging was applied to confirmed that different light intensities could generate different levels of hypoxia. To illustrate the potential utility of this system for hypoxia research, we show that it can spatiotemporally control calcium ion (Ca2+ ) influx into HEK293T cells expressing the hypoxia-responsive Ca2+ channel TRPA1.


Assuntos
Hipóxia , Oxigênio , Humanos , Células HEK293 , Espécies Reativas de Oxigênio , Glutationa
2.
Biomaterials ; 294: 122003, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736095

RESUMO

The mammalian brain has very limited ability to regenerate lost neurons and recover function after injury. Promoting the migration of young neurons (neuroblasts) derived from endogenous neural stem cells using biomaterials is a new and promising approach to aid recovery of the brain after injury. However, the delivery of sufficient neuroblasts to distant injured sites is a major challenge because of the limited number of scaffold cells that are available to guide neuroblast migration. To address this issue, we have developed an amphiphilic peptide [(RADA)3-(RADG)] (mRADA)-tagged N-cadherin extracellular domain (Ncad-mRADA), which can remain in mRADA hydrogels and be injected into deep brain tissue to facilitate neuroblast migration. Migrating neuroblasts directly contacted the fiber-like Ncad-mRADA hydrogel and efficiently migrated toward an injured site in the striatum, a deep brain area. Furthermore, application of Ncad-mRADA to neonatal cortical brain injury efficiently promoted neuronal regeneration and functional recovery. These results demonstrate that self-assembling Ncad-mRADA peptides mimic both the function and structure of endogenous scaffold cells and provide a novel strategy for regenerative therapy.


Assuntos
Caderinas , Células-Tronco Neurais , Animais , Encéfalo , Neurônios , Peptídeos , Mamíferos
3.
PLoS One ; 16(11): e0255200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752461

RESUMO

The photochemically-induced thrombosis (photothrombosis) method can create focal cerebral infarcts anywhere in the relatively superficial layers of the cerebrum; it is easy to implement and minimally invasive. Taking advantage of this versatility, we aimed to establish a new rat model of urinary frequency with focal cerebral infarction, which was characterized by its simplicity, nonlethal nature, and high reproducibility. The prefrontal cortex and the anterior cingulate cortex, which are involved in lower urinary tract control, were targeted for focal cerebral infarction, and urinary parameters were measured by cystometrogram. Cystometric analysis indicated that micturition intervals significantly shortened in photothrombosis-treated rats compared with those in the sham operative group on Days 1 and 7 (P < 0.01), but prolonged after 14 days, with no difference between the two groups. Immunopathological evaluation showed an accumulation of activated microglia, followed by an increase in reactive astrocytes at the peri-infarct zone after photothrombotic stroke. Throughout this study, all postphotothrombosis rats showed cerebral infarction in the prefrontal cortex and anterior cingulate cortex; there were no cases of rats with fatal cerebral infarction. This model corresponded to the clinical presentation, in that the micturition status changed after stroke. In conclusion, this novel model combining nonlethality and high reproducibility may be a suitable model of urinary frequency after focal cerebral infarction.


Assuntos
Infarto Cerebral/fisiopatologia , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiopatologia , Animais , Infarto Cerebral/complicações , Modelos Animais de Doenças , Feminino , Ratos , Ratos Wistar , Trombose , Bexiga Urinária Hiperativa/etiologia
4.
Nat Commun ; 12(1): 6623, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799548

RESUMO

During injured tissue regeneration, the extracellular matrix plays a key role in controlling and coordinating various cellular events by binding and releasing secreted proteins in addition to promoting cell adhesion. Herein, we develop a cell-adhesive fiber-forming peptide that mimics the jigsaw-shaped hydrophobic surface in the dovetail-packing motif of glycophorin A as an artificial extracellular matrix for regenerative therapy. We show that the jigsaw-shaped self-assembling peptide forms several-micrometer-long supramolecular nanofibers through a helix-to-strand transition to afford a hydrogel under physiological conditions and disperses homogeneously in the hydrogel. The molecular- and macro-scale supramolecular properties of the jigsaw-shaped self-assembling peptide hydrogel allow efficient incorporation and sustained release of vascular endothelial growth factor, and demonstrate cell transplantation-free regenerative therapeutic effects in a subacute-chronic phase mouse stroke model. This research highlights a therapeutic strategy for injured tissue regeneration using the jigsaw-shaped self-assembling peptide supramolecular hydrogel.


Assuntos
Regeneração do Cérebro/fisiologia , Hidrogéis/química , Peptídeos/química , Proteínas/química , Adesivos , Animais , Engenharia Biomédica , Lesões Encefálicas/diagnóstico por imagem , Adesão Celular , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/química , Hidrogéis/uso terapêutico , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras , Sistema Nervoso , Peptídeos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular
5.
Mol Brain ; 13(1): 98, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590991

RESUMO

In many mammalian species, the production of new neurons in the hippocampal dentate gyrus continues throughout life. Previous studies using rodents suggest that adult-born neurons are involved in memory and cognition tasks and mood regulation. Interferon-alpha (IFNα), a proinflammatory cytokine used for the treatment of chronic viral hepatitis and malignancies, frequently causes depressive symptoms in patients and animals, including non-human primates. We have previously demonstrated that chronic IFNα treatment decreases hippocampal neurogenesis in mice. Here, we investigated the effects of four-week human pegylated IFNα treatment on hippocampal neurogenesis and behavior in common marmosets. Continuous monitoring of voluntary activity levels using an actigraphy device suggested that adaptive ability is impaired in IFNα-treated animals. Analyses of BrdU-labeled cells expressing a marker for immature or mature neurons revealed a significant reduction in the number of new neurons in the hippocampus of IFNα-treated animals. These data indicate that chronic human IFNα treatment causes behavioral changes and a decrease in hippocampal neurogenesis in common marmosets.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/fisiologia , Interferon-alfa/farmacologia , Neurogênese/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Callithrix , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Masculino
6.
Neurosci Lett ; 714: 134550, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634502

RESUMO

BACKGROUND: Cannabinoid receptor 1 (CB1R) is a GPCR expressed widely in the brain as well as in peripheral metabolic organs. Although pharmacological blockade of CB1R has been effective for the treatment of obesity and tobacco addiction, precise distribution of CB1R within the brain and potential changes by obesity or nicotine exposure have not been thoroughly addressed. METHODS: To examine CB1R distribution within the central energy center, we performed immunostaining and qPCR analysis of micro-dissected hypothalamic nuclei from male C57BL/6 mice. To address the effect of nicotine on food intake and body weight, and on potential changes of CB1R levels in the hypothalamus, mice kept on a high fat diet (HFD) for four weeks were challenged with nicotine intraperitoneally. RESULTS: Validity of the micro-dissected samples was confirmed by the expression of established nucleus-enriched genes. The expression levels of CB1R in the arcuate and lateral nuclei of the hypothalamus were higher than paraventricular and ventral-dorsal medial nuclei. Nicotine administration led to a significant suppression of food intake and body weight either under standard or high fat diet. Neither HFD nor nicotine alone altered CB1R levels in any nucleus tested. By contrast, treatment of HFD-fed mice with nicotine led to a significant increase in CB1R levels in the arcuate, paraventricular and lateral nuclei. CONCLUSIONS: CB1R was widely distributed in multiple hypothalamic nuclei. The expression of CB1R was augmented only when mice were treated with HFD and nicotine in combination. These data suggest that the exposure to nicotine may provoke an enhanced endocannabinoid response in diet-induced obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Núcleo Hipotalâmico Dorsomedial/metabolismo , Região Hipotalâmica Lateral/metabolismo , Nicotina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor CB1 de Canabinoide/biossíntese , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Camundongos , Microdissecção/métodos , Neuropeptídeo Y/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
7.
J Neurosci ; 38(19): 4598-4609, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29661967

RESUMO

In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell-cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening and in vivo loss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell-cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB.SIGNIFICANCE STATEMENT In the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell-cell adhesion between chain-forming neuroblasts, which involves adherens junction-like structures. Our results suggest that Fyn-mediated regulation of the cell-cell adhesion of neuroblasts is critical for their detachment from chains in the postnatal brain.


Assuntos
Encéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Cateninas/metabolismo , Adesão Celular/fisiologia , Movimento Celular/genética , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia
8.
Stem Cell Reports ; 9(1): 203-216, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28648897

RESUMO

Neural stem cells (B1 astrocytes; NSCs) in the adult ventricular-subventricular-zone (V-SVZ) originate in the embryo. Surprisingly, recent work has shown that B1 cells remain largely quiescent. They are reactivated postnatally to function as primary progenitors for neurons destined for the olfactory bulb and some corpus callosum oligodendrocytes. The cellular and molecular properties of quiescent B1 cells remain unknown. Here we found that a subpopulation of B1 cells has a unique nuclear envelope invagination specialization similar to envelope-limited chromatin sheets (ELCS), reported in certain lymphocytes and some cancer cells. Using molecular markers, [3H]thymidine birth-dating, and Ara-C, we found that B1 cells with ELCS correspond to quiescent NSCs. ELCS begin forming in embryonic radial glia cells and represent a specific nuclear compartment containing particular epigenetic modifications and telomeres. These results reveal a unique nuclear compartment in quiescent NSCs, which is useful for identifying these primary progenitors and study their gene regulation.


Assuntos
Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Membrana Nuclear/ultraestrutura , Células-Tronco Adultas/citologia , Animais , Astrócitos/citologia , Ciclo Celular , Células Cultivadas , Cromatina/química , Camundongos
9.
Adv Healthc Mater ; 6(11)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28488337

RESUMO

Ischemic brain stroke is caused by blood flow interruption, leading to focal ischemia, neuron death, and motor, sensory, and/or cognitive dysfunctions. Angiogenesis, neovascularization from existing blood vessel, is essential for tissue growth and repair. Proangiogenic therapy for stroke is promising for preventing excess neuron death and improving functional recovery. Vascular endothelial growth factor (VEGF) is a critical factor for angiogenesis by promoting the proliferation, the survival, and the migration of endothelial cells. Here, angiogenic biomaterials to support injured brain regeneration are developed. Porous laminin (LN)-rich sponge (LN-sponge), on which histidine-tagged VEGF (VEGF-Histag) is immobilized via affinity interaction is developed. In an in vivo mouse stroke model, transplanting VEGF-Histag-LN-sponge produces remarkably stronger angiogenic activity than transplanting LN-sponge with soluble VEGF. The findings indicate that using affinity interactions to immobilize VEGF is a practical approach for developing angiogenic biomaterials for regenerating the injured brain.


Assuntos
Isquemia Encefálica , Proteínas Imobilizadas , Laminina , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Implantes de Medicamento/química , Implantes de Medicamento/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Laminina/química , Laminina/farmacologia , Camundongos , Porosidade , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
Front Cell Neurosci ; 9: 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674053

RESUMO

Interferon-alpha (IFN-α) is a proinflammatory cytokine that is widely used for the treatment of chronic viral hepatitis and malignancy, because of its immune-activating, antiviral, and antiproliferative properties. However, long-term IFN-α treatment frequently causes depression, which limits its clinical utility. The precise molecular and cellular mechanisms of IFN-α-induced depression are not currently understood. Neural stem cells (NSCs) in the hippocampus continuously generate new neurons, and some evidence suggests that decreased neurogenesis plays a role in the neuropathology of depression. We previously reported that IFN-α treatment suppressed hippocampal neurogenesis and induced depression-like behaviors via its receptors in the brain in adult mice. However, it is unclear how systemic IFN-α administration induces IFN-α signaling in the hippocampus. In this study, we analyzed the role of microglia, immune cells in the brain, in mediating the IFN-α-induced neurogenic defects and depressive behaviors. In vitro studies demonstrated that IFN-α treatment induced the secretion of endogenous IFN-α from microglia, which suppressed NSC proliferation. In vivo treatment of adult mice with IFN-α for 5 weeks increased the production of proinflammatory cytokines, including IFN-α, and reduced neurogenesis in the hippocampus. Both effects were prevented by simultaneous treatment with minocycline, an inhibitor of microglial activation. Furthermore, minocycline treatment significantly suppressed IFN-α-induced depressive behaviors in mice. These results suggest that microglial activation plays a critical role in the development of IFN-α-induced depression, and that minocycline is a promising drug for the treatment of IFN-α-induced depression in patients, especially those who are low responders to conventional antidepressant treatments.

11.
Tissue Eng Part A ; 21(1-2): 193-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25010638

RESUMO

After brain injury, neuroblasts generated from endogenous neural stem cells migrate toward the injured site using blood vessels as a scaffold, raising the possibility of reconstructing blood vessel network scaffolds as a strategy for promoting endogenous neuronal regeneration. In this study, we designed biomaterials based on the components and morphology of blood vessel scaffolds, and examined their ability to guide the migration of neuroblasts into a brain lesion site in mice. Transplanted porous sponge containing components of the basement membrane (BM) matrix enhanced neuroblast migration into the lesion, and detailed morphological examination suggested that the infiltrating cells used the BM sponge as a migration scaffold. Laminin (LN)-rich porous sponge also enhanced the migration of neuroblasts into the lesion, whereas BM gel and gelatin porous sponge did not. We conclude that the transplantation of LN-rich porous sponge promotes neuroblast migration into cortical lesions. This study highlights the possibility of using artificial blood vessel scaffolds to promote the regeneration of injured cerebral cortex.


Assuntos
Movimento Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Laminina/farmacologia , Neurônios/citologia , Alicerces Teciduais/química , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Membrana Basal/química , Camundongos Endogâmicos ICR , Microglia/citologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Poríferos , Porosidade
12.
Stem Cell Reports ; 3(1): 73-84, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25068123

RESUMO

New neurons generated by the neural stem cells (NSCs) in the adult hippocampus play an important role in emotional regulation and respond to the action of antidepressants. Depression is a common and serious side effect of interferon-α (IFN-α), which limits its use as an antiviral and antitumor drug. However, the mechanism(s) underlying IFN-induced depression are largely unknown. Using a comprehensive battery of behavioral tests, we found that mice subjected to IFN-α treatment exhibited a depression-like phenotype. IFN-α directly suppressed NSC proliferation, resulting in the reduced generation of new neurons. Brain-specific mouse knockout of the IFN-α receptor prevented IFN-α-induced depressive behavioral phenotypes and the inhibition of neurogenesis, suggesting that IFN-α suppresses hippocampal neurogenesis and induces depression via its receptor in the brain. These findings provide insight for understanding the neuropathology underlying IFN-α-induced depression and for developing new strategies for the prevention and treatment of IFN-α-induced depressive effects.


Assuntos
Depressão/induzido quimicamente , Interferon-alfa/efeitos adversos , Células-Tronco Neurais/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Depressão/metabolismo , Depressão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/efeitos dos fármacos
13.
Stroke ; 44(2): 551-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23238858

RESUMO

BACKGROUND AND PURPOSE: Perinatal hypoxia-ischemia (HI) has high rates of neurological deficits and mortality. So far, no effective treatment for HI brain injury has been developed. In this study, we investigated the therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) for the treatment of neonatal HI brain injury. METHODS: Unilateral HI was induced in postnatal day 5 (P5) mice. Twenty-four hours later, SHED, human skin fibroblasts, or serum-free conditioned medium derived from these cells was injected into the injured brain. The effects of cell transplantation or conditioned medium injection on the animals' neurological and pathophysiological recovery were evaluated. RESULTS: Transplanted SHED, but not fibroblasts, significantly reduced the HI-induced brain-tissue loss and improved neurological function. SHED also improved the survival of the HI mice. The engrafted SHED rarely differentiated into neural lineages; however, their transplantation inhibited the expression of proinflammatory cytokines, increased the expression of anti-inflammatory ones, and significantly reduced apoptosis. Notably, the intracerebral administration of SHED-conditioned medium also significantly improved the neurological outcome, inhibited apoptosis, and reduced tissue loss. CONCLUSIONS: SHED transplantation into the HI-injured brain resulted in remarkable neurological and pathophysiological recovery. Our findings indicate that paracrine factors derived from SHED support a neuroprotective microenvironment in the HI brain. SHED graft and SHED-conditioned medium may provide a novel neuroprotective therapy for HI.


Assuntos
Lesões Encefálicas/cirurgia , Polpa Dentária/citologia , Polpa Dentária/transplante , Hipóxia-Isquemia Encefálica/cirurgia , Transplante de Células-Tronco/métodos , Animais , Animais Recém-Nascidos , Lesões Encefálicas/patologia , Células Cultivadas , Humanos , Hipóxia-Isquemia Encefálica/patologia , Camundongos
14.
Nat Neurosci ; 15(3): 373-80, S1-2, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22246438

RESUMO

In brain development, distinct types of migration, radial migration and tangential migration, are shown by excitatory and inhibitory neurons, respectively. Whether these two types of migration operate by similar cellular mechanisms remains unclear. We examined neuronal migration in mice deficient in mDia1 (also known as Diap1) and mDia3 (also known as Diap2), which encode the Rho-regulated actin nucleators mammalian diaphanous homolog 1 (mDia1) and mDia3. mDia deficiency impaired tangential migration of cortical and olfactory inhibitory interneurons, whereas radial migration and consequent layer formation of cortical excitatory neurons were unaffected. mDia-deficient neuroblasts exhibited reduced separation of the centrosome from the nucleus and retarded nuclear translocation. Concomitantly, anterograde F-actin movement and F-actin condensation at the rear, which occur during centrosomal and nuclear movement of wild-type cells, respectively, were impaired in mDia-deficient neuroblasts. Blockade of Rho-associated protein kinase (ROCK), which regulates myosin II, also impaired nuclear translocation. These results suggest that Rho signaling via mDia and ROCK critically regulates nuclear translocation through F-actin dynamics in tangential migration, whereas this mechanism is dispensable in radial migration.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Interneurônios/fisiologia , Ventrículos Laterais/citologia , Células-Tronco Neurais/fisiologia , Actinas/metabolismo , Amidas/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular/genética , Desoxiuridina/análogos & derivados , Proteínas do Domínio Duplacortina , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Forminas , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Corpos Geniculados/citologia , Corpos Geniculados/embriologia , Corpos Geniculados/crescimento & desenvolvimento , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/metabolismo , Ventrículos Laterais/embriologia , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Técnicas de Cultura de Órgãos , Parvalbuminas/metabolismo , Transporte Proteico/genética , Piridinas/farmacologia , Proteína Reelina , Proteínas Repressoras/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Proteínas Supressoras de Tumor/metabolismo , Ácido gama-Aminobutírico/metabolismo , Quinases Associadas a rho/metabolismo
15.
Mol Brain ; 4: 35, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21951913

RESUMO

Transplantation of human neural stem/progenitor cells (hNSPCs) is a promising method to regenerate tissue from damage and recover function in various neurological diseases including brain ischemia. Galectin-1(Gal1) is a lectin that is expressed in damaged brain areas after ischemia. Here, we characterized the detailed Gal1 expression pattern in an animal model of brain ischemia. After brain ischemia, Gal1 was expressed in reactive astrocytes within and around the infarcted region, and its expression diminished over time. Previously, we showed that infusion of human Gal1 protein (hGal1) resulted in functional recovery after brain ischemia but failed to reduce the volume of the ischemic region. This prompted us to examine whether the combination of hNSPCs-transplantation and stable delivery of hGal1 around the ischemic region could reduce the ischemic volume and promote better functional recovery after brain ischemia. In this study, we transplanted hNSPCs that stably overexpressed hGal1 (hGal1-hNSPCs) in a model of unilateral focal brain ischemia using Mongolian gerbils. Indeed, we found that transplantation of hGal1-hNSPCs both reduced the ischemic volume and improved deficits in motor function after brain ischemia to a greater extent than the transplantation of hNSPCs alone. This study provides evidence for a potential application of hGal1 with hNSPCs-transplantation in the treatment of brain ischemia.


Assuntos
Isquemia Encefálica/fisiopatologia , Galectina 1/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Gerbillinae , Humanos , Masculino , Mongólia , Células-Tronco Neurais/citologia
16.
J Comp Neurol ; 519(4): 690-713, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21246550

RESUMO

The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astrocyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Callithrix/anatomia & histologia , Callithrix/crescimento & desenvolvimento , Movimento Celular/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Humanos , Imuno-Histoquímica/métodos , Ventrículos Laterais/citologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/ultraestrutura , Neurogênese , Nicho de Células-Tronco
17.
Genes (Basel) ; 2(1): 107-30, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24710140

RESUMO

Neural stem cells (NSCs) are capable of producing a variety of neural cell types, and are indispensable for the development of the mammalian brain. NSCs can be induced in vitro from pluripotent stem cells, including embryonic stem cells and induced-pluripotent stem cells. Although the transplantation of these exogenous NSCs is a potential strategy for improving presently untreatable neurological conditions, there are several obstacles to its implementation, including tumorigenic, immunological, and ethical problems. Recent studies have revealed that NSCs also reside in the adult brain. The endogenous NSCs are activated in response to disease or trauma, and produce new neurons and glia, suggesting they have the potential to regenerate damaged brain tissue while avoiding the above-mentioned problems. Here we present an overview of the possibility and limitations of using endogenous NSCs in regenerative medicine.

18.
Stem Cells ; 28(11): 2017-26, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20827749

RESUMO

The subventricular zone (SVZ) is the largest neurogenic region in the adult rodent brain. In the adult SVZ, unlike in the embryonic brain, neuronally committed precursor cells (neuroblasts) maintain their proliferative activity while migrating toward the olfactory bulb (OB), suggesting that they are inhibited from exiting the cell cycle. Little is known about the mechanisms underlying the unique ability of adult neuroblasts to proliferate during migration. Here, we studied the expression and function of Diversin, a component of the Wnt signaling pathways. In the neonatal and adult mouse brain, Diversin expression was observed in neuroblasts and mature neurons in the SVZ and hippocampus. Retrovirus-mediated overexpression of Diversin promoted the proliferation of neuroblasts and increased the number of neuroblasts that reached the OB. Conversely, the knockdown of Diversin decreased the proliferation of neuroblasts. Our results indicate that Diversin plays an important role in the proliferation of neuroblasts in the SVZ of the adult brain.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Proteínas do Citoesqueleto/genética , Feminino , Vetores Genéticos/genética , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos ICR , Retroviridae/genética
19.
Nat Cell Biol ; 12(4): 341-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20305650

RESUMO

In mammals, motile cilia cover many organs, such as fallopian tubes, respiratory tracts and brain ventricles. The development and function of these organs critically depend on efficient directional fluid flow ensured by the alignment of ciliary beating. To identify the mechanisms involved in this process, we analysed motile cilia of mouse brain ventricles, using biophysical and molecular approaches. Our results highlight an original orientation mechanism for ependymal cilia whereby basal bodies first dock apically with random orientations, and then reorient in a common direction through a coupling between hydrodynamic forces and the planar cell polarity (PCP) protein Vangl2, within a limited time-frame. This identifies a direct link between external hydrodynamic cues and intracellular PCP signalling. Our findings extend known PCP mechanisms by integrating hydrodynamic forces as long-range polarity signals, argue for a possible sensory role of ependymal cilia, and will be of interest for the study of fluid flow-mediated morphogenesis.


Assuntos
Polaridade Celular , Epêndima/citologia , Mecanotransdução Celular , Proteínas do Tecido Nervoso/metabolismo , Animais , Células Cultivadas , Líquido Cefalorraquidiano/metabolismo , Cílios/metabolismo , Epêndima/embriologia , Epêndima/metabolismo , Retroalimentação Fisiológica , Humanos , Cinesinas/metabolismo , Camundongos , Camundongos Transgênicos , Morfogênese , Movimento (Física) , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Mecânico , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(40): 17163-8, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19805150

RESUMO

Controversy remains over whether the cancer stem cell (CSC) theory applies to all tumors. To determine whether cells within a highly aggressive solid tumor are stochastically or hierarchically organized, we combined a reporter system where the nucleostemin (NS) promoter drives GFP expression (termed NS-GFP) with a mouse brain tumor model induced by retroviral Ras expression on a p16(Ink4a)/p19(Arf)-deficient background. The NS-GFP system allowed us to monitor the differentiation process of normal neural stem/precursor cells by analyzing GFP fluorescence intensity. In tumor-bearing mice, despite the very high frequency of tumorigenic cells, we successfully identified the NS-GFP(+) cells as tumor-initiating cells (T-ICs). The clonal studies conclusively established that phenotypical heterogeneity can exist among the cells comprising a genetically homogeneous tumor, suggesting that this aggressive brain tumor follows the CSC model. Detailed analyses of the NS-GFP(+) brain tumor cells revealed that T-ICs showed activation of the receptor tyrosine kinase c-Met, which functions in tumor invasiveness. Thus, the NS-GFP system provides a powerful tool to elucidate stem cell biology in normal and malignant tissues.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Transporte/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Antígeno AC133 , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Diferenciação Celular , Células Clonais/metabolismo , Células Clonais/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Citometria de Fluxo , Proteínas de Ligação ao GTP , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Células-Tronco Neoplásicas/patologia , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA