Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 523(18): 2769-87, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26010947

RESUMO

Emotional stressors activate a stereotyped set of limbic forebrain cell groups implicated in constraining stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation by inhibiting hypophysiotropic neurons in the paraventricular hypothalamic nucleus (PVH). We previously identified a circumscribed, anterior part of the bed nuclei of the stria terminalis (aBST) that houses stress-sensitive, PVH-projecting, γ-aminobutyric acid (GABA)-ergic neurons as representing a site of convergence of stress-inhibitory influences originating from medial prefrontal and hippocampal cortices. Here we investigate whether exaggerated HPA axis responses associated with chronic variable stress (CVS; daily exposure to different stressors at unpredictable times over 14 days, followed by restraint stress on day 15) and diminished HPA output seen following repeated (14 days) restraint-stress exposure are associated with differential engagement of the limbic modulatory network. Relative to acutely restrained rats, animals subjected to CVS showed the expected increase (sensitization) in HPA responses and diminished levels of activation (Fos) of GABAergic neurons and glutamic acid decarboxylase (GAD) mRNA expression in the aBST. By contrast, repeated restraint stress produced habituation in HPA responses, maintained levels of activation of GABAergic neurons, and increased GAD expression in the aBST. aBST-projecting neurons in limbic sites implicated in HPA axis inhibition tended to show diminished activational responses in both repeated-stress paradigms, with the exception of the paraventricular thalamic nucleus, in which responsiveness was maintained in repeatedly restrained animals. The results are consistent with the view that differential engagement of HPA inhibitory mechanisms in the aBST may contribute to alterations in HPA axis responses to emotional stress in sensitization and habituation paradigms.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico/fisiologia , Hormônio Adrenocorticotrópico/sangue , Análise de Variância , Animais , Corticosterona/sangue , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Septais/metabolismo , Estilbamidinas/metabolismo
2.
J Pharmacol Exp Ther ; 353(2): 307-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736419

RESUMO

The corticotropin-releasing factor (CRF) peptide family comprises the mammalian peptides CRF and the urocortins as well as frog skin sauvagine and fish urophyseal urotensin. Advances in understanding the roles of the CRF ligand family and associated receptors have often relied on radioreceptor assays using labeled CRF ligands. These assays depend on stable, high-affinity CRF analogs that can be labeled, purified, and chemically characterized. Analogs of several of the native peptides have been used in this context, most prominently including sauvagine from the frog Phyllomedusa sauvageii (PS-Svg). Because each of these affords both advantages and disadvantages, new analogs with superior properties would be welcome. We find that a sauvagine-like peptide recently isolated from a different frog species, Pachymedusa dacnicolor (PD-Svg), is a high-affinity agonist whose radioiodinated analog, [(125)ITyr(0)-Glu(1), Nle(17)]-PD-Svg, exhibits improved biochemical properties over those of earlier iodinated agonists. Specifically, the PD-Svg radioligand binds both CRF receptors with comparably high affinity as its PS-Svg counterpart, but detects a greater number of sites on both type 1 and type 2 receptors. PD-Svg is also ∼10 times more potent at stimulating cAMP accumulation in cells expressing the native receptors. Autoradiographic localization using the PD-Svg radioligand shows robust specific binding to rodent brain and peripheral tissues that identifies consensus CRF receptor-expressing sites in a greater number and/or with greater sensitivity than its PS-Svg counterpart. We suggest that labeled analogs of PD-Svg may be useful tools for biochemical, structural, pharmacological, and anatomic studies of CRF receptors.


Assuntos
Proteínas de Anfíbios/metabolismo , Anuros , Hormônios Peptídicos/metabolismo , Ensaio Radioligante/métodos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Animais , Linhagem Celular , Humanos , Marcação por Isótopo , Cinética , Ligantes , Camundongos , Dados de Sequência Molecular , Hormônios Peptídicos/química , Transporte Proteico , Ratos , Receptores de Hormônio Liberador da Corticotropina/química
3.
Nat Neurosci ; 17(12): 1751-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25402857

RESUMO

Dopaminergic neurons in the ventral tegmental area (VTA) are well known for mediating the positive reinforcing effects of drugs of abuse. Here we identify in rodents and humans a population of VTA dopaminergic neurons expressing corticotropin-releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates Crh mRNA (encoding CRF) in dopaminergic neurons of the posterior VTA, activates local CRF1 receptors and blocks nicotine-induced activation of transient GABAergic input to dopaminergic neurons. Local downregulation of Crh mRNA and specific pharmacological blockade of CRF1 receptors in the VTA reversed the effect of nicotine on GABAergic input to dopaminergic neurons, prevented the aversive effects of nicotine withdrawal and limited the escalation of nicotine intake. These results link the brain reward and stress systems in the same brain region to signaling of the negative motivational effects of nicotine withdrawal.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Neurônios/metabolismo , Nicotina/efeitos adversos , Síndrome de Abstinência a Substâncias/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Humanos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/psicologia , Área Tegmentar Ventral/efeitos dos fármacos
4.
PLoS One ; 9(6): e100370, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971956

RESUMO

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) modulates food intake and body weight under physiological and pathological conditions by acting on the hypothalamus and brainstem. When overexpressed in disease, such as in advanced cancer, elevated serum MIC-1/GDF15 levels lead to an anorexia/cachexia syndrome. To gain a better understanding of its actions in the brainstem we studied MIC-1/GDF15 induced neuronal activation identified by induction of Fos protein. Intraperitoneal injection of human MIC-1/GDF15 in mice activated brainstem neurons in the area postrema (AP) and the medial (m) portion of the nucleus of the solitary tract (NTS), which did not stain with tyrosine hydroxylase (TH). To determine the importance of these brainstem nuclei in the anorexigenic effect of MIC-1/GDF15, we ablated the AP alone or the AP and the NTS. The latter combined lesion completely reversed the anorexigenic effects of MIC-1/GDF15. Altogether, this study identified neurons in the AP and/or NTS, as being critical for the regulation of food intake and body weight by MIC-1/GDF15.


Assuntos
Depressores do Apetite/farmacologia , Área Postrema/efeitos dos fármacos , Área Postrema/fisiologia , Fator 15 de Diferenciação de Crescimento/farmacologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/fisiologia , Animais , Anorexia/induzido quimicamente , Depressores do Apetite/administração & dosagem , Fator 15 de Diferenciação de Crescimento/administração & dosagem , Infusões Intraventriculares , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Redução de Peso/efeitos dos fármacos
5.
Endocrinology ; 154(4): 1553-64, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23493376

RESUMO

Mouse (m) and human (h) urocortin 2 (Ucn 2) were identified by molecular cloning strategies and the primary sequence of their mature forms postulated by analogy to closely related members of the corticotropin-releasing factor (CRF) neuropeptide family. Because of the paucity of Ucn 2 proteins in native tissues, skin, muscle, and pancreatic cell lines were transduced with lentiviral constructs and secretion media were used to isolate and characterize Ucn 2 products and study processing. Primary structures were assigned using a combination of Edman degradation sequencing and mass spectrometry. For mUcn 2, transduced cells secreted a 39 amino acid peptide and the glycosylated prohormone lacking signal peptide; both forms were C-terminally amidated and highly potent to activate the type 2 CRF receptor. Chromatographic profiles of murine tissue extracts were consistent with cleavage of mUcn 2 prohormone to a peptidic form. By contrast to mUcn 2, mammalian cell lines transduced with hUcn 2 constructs secreted significant amounts of an 88 amino acid glycosylated hUcn 2 prohormone but were unable to further process this molecule. Similarly, WM-266-4 melanoma cells that express endogenous hUcn 2 secreted only the glycosylated prohormone lacking the signal peptide and unmodified at the C terminus. Although not amidated, hUcn 2 prohormone purified from overexpressing lines activated CRF receptor 2. Hypoxia and glycosylation, paradigms that might influence secretion or processing of gene products, did not significantly impact hUcn 2 prohormone cleavage. Our findings identify probable Ucn 2 processing products and should expedite the characterization of these proteins in mammalian tissues.


Assuntos
Hormônio Liberador da Corticotropina , Processamento de Proteína Pós-Traducional , Urocortinas , Sequência de Aminoácidos , Animais , Hipóxia Celular , Células Cultivadas , Hormônio Liberador da Corticotropina/química , Hormônio Liberador da Corticotropina/metabolismo , Glicosilação , Humanos , Camundongos , Dados de Sequência Molecular , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução Genética , Urocortinas/química , Urocortinas/metabolismo
6.
Neuron ; 65(1): 94-106, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20152116

RESUMO

Cytokines produced during infection/inflammation activate adaptive central nervous system (CNS) responses, including acute stress responses mediated by the hypothalamo-pituitary-adrenal (HPA) axis. The mechanisms by which cytokines engage HPA control circuitry remain unclear, though stimulated release of prostanoids from neighboring vascular cells has been implicated in this regard. How specific vascular cell types, endothelial cells (ECs) versus perivascular cells (PVCs; a subset of brain-resident macrophages), participate in this response remains unsettled. We exploited the phagocytic activity of PVCs to deplete them in rats by central injection of a liposome-encapsulated proapoptotic drug. This manipulation abrogated CNS and hormonal indices of HPA activation under immune challenge conditions (interleukin-1) that activated prostanoid synthesis only in PVCs, while enhancing these responses to stimuli (lipopolysaccharide) that engaged prostanoid production by ECs as well. Thus, PVCs provide both prostanoid-mediated drive to the HPA axis and an anti-inflammatory action that constrains endothelial and overall CNS responses to inflammatory insults.


Assuntos
Encéfalo , Macrófagos/imunologia , Transdução de Sinais/imunologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/fisiologia , Ciclo-Oxigenase 2/metabolismo , Sistema Hipotálamo-Hipofisário/imunologia , Inflamação/imunologia , Interleucina-1beta/imunologia , Lipopolissacarídeos/imunologia , Lipossomos/metabolismo , Macrófagos/citologia , Masculino , Sistema Hipófise-Suprarrenal/imunologia , Prostaglandinas/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Brain Behav Immun ; 23(7): 1038-52, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19524662

RESUMO

Bacterial lipopolysaccharide (LPS) is widely used to study immune influences on the CNS, and cerebrovascular prostaglandin (PG) synthesis is implicated in mediating LPS influences on some acute phase responses. Other bacterial products, such as staphylococcal enterotoxin B (SEB), impact target tissues differently in that their effects are T-lymphocyte-dependent, yet both LPS and SEB recruit a partially overlapping set of subcortical central autonomic cell groups. We sought to compare neurovascular responses to the two pathogens, and the mechanisms by which they may access the brain. Rats received iv injections of LPS (2 microg/kg), SEB (1mg/kg) or vehicle and were sacrificed 0.5-3h later. Both challenges engaged vascular cells as early 0.5h, as evidenced by induced expression of the vascular early response gene (Verge), and the immediate-early gene, NGFI-B. Cyclooxygenase-2 (COX-2) expression was detected in both endothelial and perivascular cells (PVCs) in response to LPS, but only in PVCs of SEB-challenged animals. The non-selective COX inhibitor, indomethacin (1mg/kg, iv), blocked LPS-induced activation in a subset of central autonomic structures, but failed to alter SEB-driven responses. Liposome mediated ablation of PVCs modulated the CNS response to LPS, did not affect the SEB-induced activational profile. By contrast, disruptions of interoceptive signaling by area postrema lesions or vagotomy (complete or hepatic) markedly attenuated SEB-, but not LPS-, stimulated central activational responses. Despite partial overlap in their neuronal and vascular response profiles, LPS and SEB appear to use distinct mechanisms to access the brain.


Assuntos
Vasos Sanguíneos/imunologia , Encéfalo/imunologia , Ácido Clodrônico/farmacologia , Células Endoteliais/imunologia , Neurônios/imunologia , Linfócitos T/imunologia , Animais , Área Postrema/lesões , Área Postrema/fisiopatologia , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Ciclo-Oxigenase 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Enterotoxinas/toxicidade , Proteínas Imediatamente Precoces/imunologia , Proteínas Imediatamente Precoces/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Indometacina/farmacologia , Injeções Intravenosas , Injeções Intraventriculares , Lipopolissacarídeos/toxicidade , Lipossomos , Ativação Linfocitária/imunologia , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/imunologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Linfócitos T/metabolismo , Vagotomia
8.
J Neurosci ; 29(22): 7330-40, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19494154

RESUMO

Complementing its roles in cognitive and affective information processing, the medial prefrontal cortex (mPFC) is a nodal point of a limbic forebrain circuit that modulates stress-related homeostatic mechanisms, including the hypothalamic-pituitary-adrenal (HPA) axis. mPFC influences on HPA output are predominantly inhibitory and emanate from the prelimbic and/or dorsal anterior cingulate cortical fields (PL and ACd, respectively). mPFC projections do not target HPA effector neurons in the paraventricular hypothalamic nucleus (PVH) directly, distributing instead to nearby forebrain regions, including some that house GABAergic neurons implicated in inhibitory PVH control. To identify pathway(s) subserving HPA-inhibitory mPFC influences, an initial screen for sources of GABAergic input to PVH whose sensitivity to an acute emotional (restraint) stress was diminished by PL/ACd lesions identified a discrete region of the anterior bed nucleus of the stria terminalis (aBST) as a candidate for fulfilling this role. Anatomical tracing experiments confirmed projections from PL (but not ACd) to implicated aBST cell groups, and from these to PVH. Finally, selective immunotoxin-mediated ablation of GABAergic aBST neurons recapitulated the effects of PL/ACd lesions on acute stress-induced activation of HPA output. The identification of a proximate mediator of HPA-inhibitory limbic influences provides a framework for clarifying how inhibitory neural and hormonal controls of HPA output are integrated, adaptations of the axis to chronic stress are effected, and how endocrine abnormalities may contribute to stress-related psychiatric illnesses in which mPFC dysfunction is implicated.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Análise de Variância , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Dextranos/metabolismo , Agonistas de Aminoácidos Excitatórios/toxicidade , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Ibotênico/toxicidade , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas v-fos/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Fito-Hemaglutininas/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/lesões , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estilbamidinas/metabolismo
9.
Nat Med ; 14(10): 1112-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18758446

RESUMO

The adipocyte-derived hormone leptin maintains energy balance by acting on hypothalamic leptin receptors (Leprs) that act on the signal transducer and activator of transcription 3 (Stat3). Although disruption of Lepr-Stat3 signaling promotes obesity in mice, other features of Lepr function, such as fertility, seem normal, pointing to the involvement of additional regulators. Here we show that the cyclic AMP responsive element-binding protein-1 (Creb1)-regulated transcription coactivator-1 (Crtc1) is required for energy balance and reproduction-Crtc1(-/-) mice are hyperphagic, obese and infertile. Hypothalamic Crtc1 was phosphorylated and inactive in leptin-deficient ob/ob mice, while leptin administration increased amounts of dephosphorylated nuclear Crtc1. Dephosphorylated Crtc1 stimulated expression of the Cartpt and Kiss1 genes, which encode hypothalamic neuropeptides that mediate leptin's effects on satiety and fertility. Crtc1 overexpression in hypothalamic cells increased Cartpt and Kiss1 gene expression, whereas Crtc1 depletion decreased it. Indeed, leptin enhanced Crtc1 activity over the Cartpt and Kiss1 promoters in cells overexpressing Lepr, and these effects were disrupted by expression of a dominant-negative Creb1 polypeptide. As leptin administration increased recruitment of hypothalamic Crtc1 to Cartpt and Kiss1 promoters, our results indicate that the Creb1-Crtc1 pathway mediates the central effects of hormones and nutrients on energy balance and fertility.


Assuntos
Metabolismo Energético , Fertilidade , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Feminino , Kisspeptinas , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Fosforilação , Proteínas/genética , Proteínas/fisiologia , Fatores de Transcrição/genética
10.
J Neurosci ; 28(22): 5806-16, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18509042

RESUMO

The medial prefrontal cortex (mPFC) has been proposed to play a role in the inhibition of hypothalamo-pituitary-adrenal (HPA) responses to emotional stress via influences on neuroendocrine effector mechanisms housed in the paraventricular hypothalamic nucleus (PVH). Previous work also suggests an involvement of the locus ceruleus (LC) in behavioral and neuroendocrine responses to a variety of acute stressors. The LC issues a widespread set of noradrenergic projections, and its innervation of the prefrontal cortex plays an important role in the modulation of working memory and attention. Because these operations are likely to be critical for stimulus selection, evaluation, and comparison with past experience in mounting adaptive responses to emotional stress, it follows that the LC-to-mPFC pathway might also be involved in regulating HPA activity under such conditions. Therefore, in the present study, we assessed the effects of selectively ablating noradrenergic inputs into the mPFC, using the axonally transported catecholamine immunotoxin, saporin-conjugated antiserum to dopamine-beta-hydroxylase, on acute restraint stress-induced activation of HPA output. Immunotoxin injections in the dorsal mPFC (centered in the prelimbic cortex) attenuated increments in restraint-induced Fos and corticotropin-releasing factor mRNA expression in the neurosecretory region of PVH, as well as HPA secretory responses. Stress-induced Fos expression in dorsal mPFC was enhanced after noradrenergic deafferentation and was negatively correlated with stress-induced PVH activation, independent of lesion status. These findings identify the LC as an upstream component of a circuitry providing for dorsal mPFC modulation of emotional stress-induced HPA activation.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Norepinefrina/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/patologia , Hormônio Adrenocorticotrópico/genética , Hormônio Adrenocorticotrópico/metabolismo , Animais , Química Encefálica/efeitos dos fármacos , Corticosterona/sangue , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Denervação/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Imunotoxinas/efeitos adversos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/sangue , Estresse Psicológico/induzido quimicamente
11.
J Comp Neurol ; 502(3): 455-67, 2007 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-17366612

RESUMO

Catecholamine-containing projections from the medulla have been implicated in the mediation of activational responses of the paraventricular nucleus of the hypothalamus (PVH) provoked by moderate doses of interleukin-1 (IL-1). To test the generality of this mechanism, rats bearing unilateral transections of aminergic projections were challenged with intravenous IL-1 (2 microg/kg), bacterial lipopolysaccharide (LPS; 0.1, 2.0, or 100 microg/kg), or saline and perfused 3 hours later; their brains were then prepared for quantitative analysis of Fos induction and relative levels of corticotropin-releasing factor (CRF) mRNA. LPS provoked a robust and dose-related increase in Fos expression within the PVH on the intact side of the brain at all doses tested; the response to IL-1 approximated that to the lowest LPS dose. On the lesioned side, Fos induction was significantly reduced at all dosage levels but was eliminated only at the lowest dosage. The percentage reduction was greatest (75%) in IL-1-challenged rats and was progressively less in animals treated with increasing LPS doses (67, 59, and 46%, respectively). Specificity of aminergic involvement was tested by using intra-PVH administration of the axonally transported catecholamine immunotoxin, antiDBH-saporin. This treatment abolished IL-1-induced elevations of Fos-ir and CRF mRNA in the PVH but left intact comparable responses to restraint stress. These data support a specific involvement of ascending catecholaminergic projections in mediating PVH responses to IL-1 and LPS. Residual Fos induction seen in lesioned animals in response to higher doses of LPS provides a basis for probing additional circuits that may be recruited in a hierarchical manner in response to more strenuous or complex immune insults.


Assuntos
Catecolaminas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Vias Aferentes/fisiologia , Análise de Variância , Animais , Anticorpos Monoclonais/toxicidade , Tronco Encefálico/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Dopamina beta-Hidroxilase/imunologia , Lateralidade Funcional , Imunotoxinas/toxicidade , Hibridização In Situ , Masculino , Proteínas Oncogênicas v-fos/metabolismo , Núcleo Hipotalâmico Paraventricular/lesões , Núcleo Hipotalâmico Paraventricular/fisiologia , Ratos , Ratos Sprague-Dawley , Restrição Física/métodos
12.
PLoS Biol ; 4(9): e284, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16933973

RESUMO

All phases of lipopolysaccharide (LPS)-induced fever are mediated by prostaglandin (PG) E2. It is known that the second febrile phase (which starts at approximately 1.5 h post-LPS) and subsequent phases are mediated by PGE2 that originated in endotheliocytes and perivascular cells of the brain. However, the location and phenotypes of the cells that produce PGE2 triggering the first febrile phase (which starts at approximately 0.5 h) remain unknown. By studying PGE2 synthesis at the enzymatic level, we found that it was activated in the lung and liver, but not in the brain, at the onset of the first phase of LPS fever in rats. This activation involved phosphorylation of cytosolic phospholipase A2 (cPLA2) and transcriptional up-regulation of cyclooxygenase (COX)-2. The number of cells displaying COX-2 immunoreactivity surged in the lung and liver (but not in the brain) at the onset of fever, and the majority of these cells were identified as macrophages. When PGE2 synthesis in the periphery was activated, the concentration of PGE2 increased both in the venous blood (which collects PGE2 from tissues) and arterial blood (which delivers PGE2 to the brain). Most importantly, neutralization of circulating PGE2 with an anti-PGE2 antibody both delayed and attenuated LPS fever. It is concluded that fever is initiated by circulating PGE2 synthesized by macrophages of the LPS-processing organs (lung and liver) via phosphorylation of cPLA2 and transcriptional up-regulation of COX-2. Whether PGE2 produced at the level of the blood-brain barrier also contributes to the development of the first phase remains to be clarified.


Assuntos
Febre/induzido quimicamente , Febre/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Febre/fisiopatologia , Regulação Enzimológica da Expressão Gênica , Fígado/citologia , Fígado/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Macrófagos/metabolismo , Masculino , Ratos , Ratos Long-Evans , Transdução de Sinais , Regulação para Cima
13.
J Comp Neurol ; 495(2): 236-54, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16435288

RESUMO

Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that engages the immune system in a T-lymphocyte-dependent manner and induces a cytokine profile distinct from that elicited by the better-studied bacterial pathogen analog, lipopolysaccharide (LPS). Because of reports of SEB recruiting central nervous system (CNS) host defense mechanisms via pathways in common with LPS, we sought to further characterize central systems impacted by this agent. Rats were treated with SEB at doses of 50-5,000 mug/kg, and killed 0.5-6 hours thereafter. SEB injection produced a discrete pattern of Fos induction in brain that peaked at 2-3 hours postinjection and whose strength was dose-related. Induced Fos expression was predominantly subcortical and focused in a set of interconnected central autonomic structures, including aspects of the bed n. of the stria terminalis, central amygdala and lateral parabrachial nuclei; functionally related (and LPS-responsive) cell groups in the n. solitary tract, ventrolateral medulla, and paraventricular hypothalamic n. (PVH) were, by contrast, weakly responsive. SEB also activated cell groups in the limbic forebrain (lateral septal n, medial prefrontal cortex) and hypothalamic GABAergic neurons, which could account for its failure to elicit reliable increases in Fos-ir or corticotropin-releasing factor (CRF) mRNA in the PVH. SEB nevertheless did provoke reliable pituitary-adrenal secretory responses. The identification of subsets of central autonomic and limbic forebrain structures that are sensitive to SEB provides a basis for a systems-level understanding of the physiological and behavioral effects attributed to the superantigen. Core SEB-responsive cell groups exclude a medullary-PVH circuit implicated in pituitary-adrenal responses to LPS.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Enterotoxinas/farmacologia , Vias Neurais , Estresse Fisiológico/metabolismo , Linfócitos T/efeitos dos fármacos , Hormônio Adrenocorticotrópico/metabolismo , Animais , Contagem de Células/métodos , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Citocinas/sangue , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Interleucina-1/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/imunologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Proteínas Oncogênicas v-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Linfócitos T/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Front Biosci ; 8: s1321-9, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12957837

RESUMO

Cytokines released from activated immune cells can act on the brain to elicit a range of centrally mediated acute phase responses. Several lines of evidence point to the barriers between the brain and its fluid environments, mainly cells associated with the cerebral vasculature, as critical sites for the transduction of circulating cytokine signals, and the initiation of brain responses to them by virtue of their capacity to produce local signaling molecules, notably prostaglandins. While it was initially assumed that such functions were the province of the vascular endothelium, recent work has identified a subset of marrow-derived brain macrophages, termed perivascular cells, as exhibiting the greater sensitivity to prostanoid synthesis induced by systemic cytokine or endotoxin challenges. Application of a novel liposome-based targeting method supports a critical involvement of brain macrophages, and their capacity to manifest induced prostanoid synthesis, in the interleukin-1-induced recruitment of control circuitry governing at least one acute phase response (hypothalamo-pituitary-adrenal axis activation), and suggests a two-way interaction between perivascular and endothelial cells in monitoring circulating cytokine signals. The ability to selectively manipulate perivascular cells holds promise for further informing mechanisms of immune-to-brain, and for intervening in pathologies that may result from dysfunction of such interactions.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Animais , Encéfalo/citologia , Humanos , Inflamação/patologia , Macrófagos/patologia , Modelos Neurológicos
16.
J Neurosci ; 23(13): 5607-16, 2003 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12843263

RESUMO

The paraventricular hypothalamic nucleus (PVH) is a key site for integrating neuroendocrine, autonomic, and behavioral adjustments to diverse homeostatic challenges, including "physiological" (e.g., infection or hemorrhage) and "emotional" [e.g., restraint (RST) or footshock] stresses. Both types of challenges ultimately converge to activate common response systems represented in PVH, including the hypothalamo-pituitary-adrenal axis and the sympathoadrenal system. Oligonucleotide microarrays (U74A; Affymetrix, Santa Clara, CA) were used to compare and contrast gene expression profiles in the PVH elicited at 1 and 3 hr after acute exposure to representative physiological [intraperitoneal injection of 10 microg lipopolysaccharide (LPS)] and emotional (30 min RST) stressors. In general, the two challenges recruited relatively few genes in common, with the degree of overlap varying across functional classes of genes. The greatest degree of commonality was seen among signaling molecules and neuropeptides, whereas transcription factors upregulated by RST and LPS were largely distinct. Unexpectedly, RST induced a number of immune-related molecules, which were not regulated by LPS. Hybridization histochemical analyses localized a subset of responsive transcripts to the PVH and/or immediately adjoining regions. Immunerelated molecules in particular distributed broadly to vascular and other barrier-associated cell types. These global transcriptional profiles inform the search for early (transcription factors) and late (target genes) mechanisms in the modulation of PVH, and generalized CNS, responses to categorically distinct stressors.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Estresse Fisiológico/metabolismo , Fatores de Transcrição , Transcrição Gênica , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT , Proteínas Estimuladoras de Ligação a CCAAT/genética , Quimiocina CCL2/genética , Quimiocina CXCL1 , Quimiocina CXCL10 , Quimiocinas/genética , Quimiocinas CXC/genética , Fatores Quimiotáticos/genética , Eletrochoque , Regulação da Expressão Gênica/efeitos dos fármacos , Genes MHC da Classe II , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , RNA Mensageiro/metabolismo , Restrição Física , Estresse Fisiológico/induzido quimicamente , Transcrição Gênica/efeitos dos fármacos
17.
J Neurosci ; 23(12): 5197-207, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12832544

RESUMO

Cytogenesis in the adult brain can result from the recruitment of circulating precursors, but the proposal that some such cells transdifferentiate into neural elements is controversial. We have reinvestigated this issue by following the phenotypic fate of bone marrow cells expressing the green fluorescent protein transplanted into the systemic circulation of irradiated mice. Thousands of donor-derived cells were detected throughout brains of recipients killed 1-12 months after transplantation, but none displayed neuronal, macroglial, or endothelial characteristics, even after injury. Among those that crossed the endothelium of the cerebral cortex, >99.7% were identified as perivascular macrophages. Newly formed parenchymal microglia were found in significant numbers only in the cerebellum and at injury sites. Therefore, bone marrow does supply the mature brain with new specialized cells; however, mesenchymal precursors neither adopt neural phenotypes nor contribute to cerebral vascular remodeling. This continuous traffic of macrophages across the blood-brain barrier provides a vehicle to introduce therapeutic genes into the nervous system.


Assuntos
Transplante de Medula Óssea , Encéfalo/citologia , Sistema Hematopoético/citologia , Animais , Barreira Hematoencefálica/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Contagem de Células , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula , Descorticação Cerebral , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/citologia , Microglia/patologia , Fenótipo , Tempo
18.
J Pharmacol Exp Ther ; 305(1): 385-93, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12649393

RESUMO

Corticotropin-releasing factor (CRF) has been hypothesized to modulate consummatory behavior through the Type 2 CRF (CRF(2)) receptor. However, behavioral functions subserved by the CRF(2) receptor remain poorly understood. Recently, human urocortin II (hUcn II), a selective CRF(2) receptor agonist, was identified. To study the effects of this neuropeptide on ingestive behavior, we examined the effects of centrally infused hUcn II (i.c.v. 0, 0.01, 0.1, 1.0, 10.0 micro g) on the microstructure of nose-poke responding for food and water in nondeprived, male rats. Malaise-inducing properties of the peptide were monitored using conditioned taste aversion (CTA) testing. To identify potential sites of action, central induction of Fos protein expression was examined. hUcn II dose dependently reduced the quantity and duration of responding for food and water at doses lower (0.01-1.0 micro g) than that forming a CTA (10 micro g). Effects were most evident during hours 4 to 6 of the dark cycle. Meal pattern analysis showed that hUcn II potently (0.1 micro g) increased the satiating value of food. Rats ate and drank smaller and shorter meals without changing meal frequency. Rats also ate more slowly. hUcn II induced Fos in regions involved in visceral sensory processing and autonomic/neuroendocrine regulation and resembling those activated by appetite suppressants. hUcn II is a promising neuropeptide for investigating the role of the CRF(2) receptor in ingestive behavior.


Assuntos
Hormônio Liberador da Corticotropina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/agonistas , Animais , Humanos , Masculino , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Ratos Wistar , Urocortinas , Água
19.
J Neurosci ; 22(13): 5606-18, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12097512

RESUMO

Induced prostanoid synthesis by cells associated with the cerebral vasculature has been implicated in mediating immune system influences on the CNS, but the cell type(s) involved remain unsettled. To determine whether this might derive from differences in the nature and intensity of the stimuli used to model immune insults, immunochemical and hybridization histochemical methods were used to monitor cyclooxygenase-2 (COX-2) expression alone, or in conjunction with endothelial, perivascular, and glial cell markers, in brains of rats treated with varying doses of interleukin-1 (IL-1) or bacterial lipopolysaccharide (LPS). Vehicle-treated animals displayed weak COX-2 expression in the meninges, choroid plexus, and larger blood vessels. Rats challenged intravenously with IL-1beta (1.87-30 microgram/kg) showed a marked increase in the number of vascular-associated cells displaying COX-2-immunoreactivity (ir). More than 90% stained positively for the ED2 macrophage differentiation antigen, identifying them as perivascular cells, whereas none coexpressed endothelial or glial cell markers. Low doses of LPS (0.1 microgram/kg) elicited a similar response profile, but higher doses (2-100 microgram/kg) provoked COX-2 expression in a progressively greater number of cells exhibiting distinct round or multipolar morphologies, corresponding to cells expressing endothelial (RECA-1) or perivascular (ED2) cell antigens, respectively. Similarly, ultrastructural analysis localized COX-2-ir to the perinuclear region of endothelial cells of LPS-treated but not IL-1-treated rats. We conclude that perivascular cells exhibit the lower threshold to COX-2 expression in response to either IL-1 or endotoxin treatment, and that enzyme expression by endothelial cells requires one or more facets of the more complex immune stimulus presented by LPS.


Assuntos
Vasos Sanguíneos/enzimologia , Encéfalo/irrigação sanguínea , Encéfalo/enzimologia , Fatores Imunológicos/farmacologia , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Indometacina/farmacologia , Interleucina-1/farmacologia , Isoenzimas , Lipopolissacarídeos/farmacologia , Masculino , Neuroglia/enzimologia , Prostaglandina-Endoperóxido Sintases , Proteínas Proto-Oncogênicas c-fos/biossíntese , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Ativação Transcricional
20.
J Neurosci ; 22(12): 5091-9, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12077204

RESUMO

Cytokine-mediated anorexia is a component of "sickness behavior" and presents a significant obstacle in the treatment of chronic illnesses. We hypothesized an involvement of the hypothalamic arcuate nucleus (ARH) in mediating the anorexic effects of a systemic interleukin-1 (IL-1) challenge based on its content of peptidergic neurons involved in feeding, its expression of IL-1 receptors and its sensitivity to systemic IL-1. IL-1 (6 microg/kg, i.v.) was found to induce Fos expression in both pro-opiomelanocortin- and neuropeptide Y-expressing neurons in and around the ARH. Contrary to expectations, rats that had sustained lesions of the arcuate nucleus, produced by neonatal monosodium glutamate treatment, displayed a more pronounced suppression (by 25%) of food intake than nonlesioned controls when treated with IL-1 after a 20 hr fast. To confirm and further characterize this unexpected result, a second ablation method was used in a similar paradigm. Animals bearing knife cuts designed to sever major ARH projections displayed an even more accentuated loss of appetite (by 60%, relative to controls) in response to systemic IL-1. This effect exhibited at least some degree of specificity, because the knife cuts did not alter either IL-1 effects on another centrally mediated acute phase response (fever) or the anorexia produced by an alternate agent, fenfluramine. These results fail to support the hypothesized ARH mediation of IL-1-induced anorexia and may suggest rather that the net output of this cell group may serve normally to restrain cytokine-induced reductions in food intake.


Assuntos
Anorexia/induzido quimicamente , Núcleo Arqueado do Hipotálamo/fisiopatologia , Interleucina-1/farmacologia , Animais , Anorexia/metabolismo , Anorexia/patologia , Anorexia/fisiopatologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Denervação , Ingestão de Alimentos/efeitos dos fármacos , Cinética , Masculino , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Glutamato de Sódio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA