Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(1): 102064, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853672

RESUMO

Impaired mitochondrial iron metabolism is associated with aging and a variety of diseases, and there is a growing need to accurately quantify mitochondrial iron levels. This protocol provides an optimized method for evaluating non-heme and heme iron in mitochondrial and cytosolic fractions of tissues and cultured cells. Our protocol consists of three steps: sample fractionation, non-heme iron measurement, and heme iron measurement. For complete details on the use and execution of this protocol, please refer to Sato et al. (2022).1.


Assuntos
Heme , Ferro , Camundongos , Animais , Ferro/metabolismo , Mitocôndrias/metabolismo , Células Cultivadas
2.
Elife ; 102021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835027

RESUMO

Chronic loss of Augmenter of Liver Regeneration (ALR) results in mitochondrial myopathy with cataracts; however, the mechanism for this disorder remains unclear. Here, we demonstrate that loss of ALR, a principal component of the MIA40/ALR protein import pathway, results in impaired cytosolic Fe/S cluster biogenesis in mammalian cells. Mechanistically, MIA40/ALR facilitates the mitochondrial import of ATP-binding cassette (ABC)-B8, an inner mitochondrial membrane protein required for cytoplasmic Fe/S cluster maturation, through physical interaction with ABCB8. Downregulation of ALR impairs mitochondrial ABCB8 import, reduces cytoplasmic Fe/S cluster maturation, and increases cellular iron through the iron regulatory protein-iron response element system. Our finding thus provides a mechanistic link between MIA40/ALR import machinery and cytosolic Fe/S cluster maturation through the mitochondrial import of ABCB8, and offers a potential explanation for the pathology seen in patients with ALR mutations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Animais , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico
3.
JCI Insight ; 3(13)2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29997282

RESUMO

The role of posttranscriptional metabolic gene regulatory programs in diabetes is not well understood. Here, we show that the RNA-binding protein tristetraprolin (TTP) is reduced in the livers of diabetic mice and humans and is transcriptionally induced in response to insulin treatment in murine livers in vitro and in vivo. Liver-specific Ttp-KO (lsTtp-KO) mice challenged with high-fat diet (HFD) have improved glucose tolerance and peripheral insulin sensitivity compared with littermate controls. Analysis of secreted hepatic factors demonstrated that fibroblast growth factor 21 (FGF21) is posttranscriptionally repressed by TTP. Consistent with increased FGF21, lsTtp-KO mice fed HFD have increased brown fat activation, peripheral tissue glucose uptake, and adiponectin production compared with littermate controls. Downregulation of hepatic Fgf21 via an adeno-associated virus-driven shRNA in mice fed HFD reverses the insulin-sensitizing effects of hepatic Ttp deletion. Thus, hepatic TTP posttranscriptionally regulates systemic insulin sensitivity in diabetes through liver-derived FGF21.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Resistência à Insulina , Tristetraprolina/genética , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/sangue , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Processamento Pós-Transcricional do RNA , Tristetraprolina/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(27): E6291-E6300, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915044

RESUMO

Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.


Assuntos
Deficiências de Ferro , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , NADH Desidrogenase/metabolismo , Tristetraprolina/metabolismo , Animais , Linhagem Celular , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , NADH Desidrogenase/genética , Oxirredução , Tristetraprolina/genética
5.
J Clin Invest ; 127(4): 1505-1516, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28287409

RESUMO

SIRT2 is a cytoplasmic sirtuin that plays a role in various cellular processes, including tumorigenesis, metabolism, and inflammation. Since these processes require iron, we hypothesized that SIRT2 directly regulates cellular iron homeostasis. Here, we have demonstrated that SIRT2 depletion results in a decrease in cellular iron levels both in vitro and in vivo. Mechanistically, we determined that SIRT2 maintains cellular iron levels by binding to and deacetylating nuclear factor erythroid-derived 2-related factor 2 (NRF2) on lysines 506 and 508, leading to a reduction in total and nuclear NRF2 levels. The reduction in nuclear NRF2 leads to reduced ferroportin 1 (FPN1) expression, which in turn results in decreased cellular iron export. Finally, we observed that Sirt2 deletion reduced cell viability in response to iron deficiency. Moreover, livers from Sirt2-/- mice had decreased iron levels, while this effect was reversed in Sirt2-/- Nrf2-/- double-KO mice. Taken together, our results uncover a link between sirtuin proteins and direct control over cellular iron homeostasis via regulation of NRF2 deacetylation and stability.


Assuntos
Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuína 2/fisiologia , Acetilação , Animais , Proteínas de Transporte de Cátions/metabolismo , Epigênese Genética , Expressão Gênica , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Fígado/metabolismo , Camundongos Knockout , Estabilidade Proteica , Ativação Transcricional
6.
EMBO Mol Med ; 8(3): 247-67, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26896449

RESUMO

Excess cellular iron increases reactive oxygen species (ROS) production and causes cellular damage. Mitochondria are the major site of iron metabolism and ROS production; however, few studies have investigated the role of mitochondrial iron in the development of cardiac disorders, such as ischemic heart disease or cardiomyopathy (CM). We observe increased mitochondrial iron in mice after ischemia/reperfusion (I/R) and in human hearts with ischemic CM, and hypothesize that decreasing mitochondrial iron protects against I/R damage and the development of CM. Reducing mitochondrial iron genetically through cardiac-specific overexpression of a mitochondrial iron export protein or pharmacologically using a mitochondria-permeable iron chelator protects mice against I/R injury. Furthermore, decreasing mitochondrial iron protects the murine hearts in a model of spontaneous CM with mitochondrial iron accumulation. Reduced mitochondrial ROS that is independent of alterations in the electron transport chain's ROS producing capacity contributes to the protective effects. Overall, our findings suggest that mitochondrial iron contributes to cardiac ischemic damage, and may be a novel therapeutic target against ischemic heart disease.


Assuntos
Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Ferro/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL
7.
J Biol Chem ; 285(51): 40333-41, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20956525

RESUMO

IFNα exerts potent inhibitory activities against malignant melanoma cells in vitro and in vivo, but the mechanisms by which it generates its antitumor effects remain unknown. We examined the effects of interferon α (IFNα) on the expression of human members of the Schlafen (SLFN) family of genes, a group of cell cycle regulators that mediate growth-inhibitory responses. Using quantitative RT-real time PCR, we found detectable basal expression of all the different human SLFN genes examined (SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14), in malignant melanoma cells and primary normal human melanocytes, but SLFN5 basal expression was suppressed in all analyzed melanoma cell lines. Treatment of melanoma cells with IFNα resulted in induction of expression of SLFN5 in malignant cells, suggesting a potential involvement of this gene in the antitumor effects of IFNα. Importantly, stable knockdown of SLFN5 in malignant melanoma cells resulted in increased anchorage-independent growth, as evidenced by enhanced colony formation in soft agar assays. Moreover, SLFN5 knockdown also resulted in increased invasion in three-dimensional collagen, suggesting a dual role for SLFN5 in the regulation of invasion and anchorage-independent growth of melanoma cells. Altogether, our findings suggest an important role for the SLFN family of proteins in the generation of the anti-melanoma effects of IFNα and for the first time directly implicate a member of the human SLFN family in the regulation of cell invasion.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Interferon-alfa/farmacologia , Melanócitos/metabolismo , Melanoma/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanócitos/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Invasividade Neoplásica
8.
Ann Thorac Surg ; 89(4): 1015-21; discussion 1022-3, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20338301

RESUMO

BACKGROUND: Esophagectomy is indicated occasionally for the treatment of patients with refractory gastroesophageal reflux disease (GERD) or recurrent hiatus hernia. The purpose of this study was to evaluate the impact of previous gastroesophageal operations on outcomes after esophagectomy for recurrent GERD or hiatus hernia. METHODS: Using a prospectively accumulated database, a retrospective review was performed to identify patients undergoing esophagectomy for complicated GERD or hiatus hernia. Mortality, perioperative and functional outcomes, and need for reoperation were evaluated, assessing esophagectomy patients who had undergone prior operations for GERD or hiatus hernia. RESULTS: Of 258 patients with GERD or hiatus hernia undergoing esophagectomy, 104 had undergone a previous operation, with a median interval to esophagectomy of 28 months. Transhiatal resection was accomplished in fewer patients undergoing reoperation (87 of 104 versus 151 of 154; p<0.005). A gastric conduit was used as an esophageal replacement in fewer patients with previous operation(s) (89 of 104 versus 150 of 154; p<0.005). Esophagectomy patients with a history of prior gastroesophageal surgery, as compared with those without, sustained more blood loss and were more likely to require reoperation, and fewer reported good to excellent swallowing function (p<0.05). There was no difference in the occurrence of anastomotic leak. CONCLUSIONS: Esophagectomy in patients who have undergone prior operations for either GERD or hiatus hernia can be accomplished without thoracotomy and with satisfactory intermediate-term quality of life. Such patients should be evaluated and prepared for the use of alternative conduits should the remobilized stomach prove to be an unsatisfactory esophageal substitute at the time of esophagectomy.


Assuntos
Esofagectomia , Refluxo Gastroesofágico/cirurgia , Hérnia Hiatal/cirurgia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA