Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38848721

RESUMO

Cancer engineering is an interdisciplinary approach that promises to confront the complexities of cancer and accelerate transformative discoveries by integrating innovative fields across engineering and the physical sciences with a focus on cancer. We offer a conceptual framework for the hallmarks of cancer engineering, integrating 12 fields: system dynamics; imaging, radiation, and spectroscopy; robotics and controls; solid mechanics; fluid mechanics; chemistry and nanomaterials; mathematics and simulation; cellular and protein engineering; kinetics and thermodynamics; materials science; manufacturing and biofabrication; and microsystems.

2.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Lipídeos , RNA , Microambiente Tumoral , Animais , Cães , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Glioma/terapia , Glioma/imunologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , RNA/química , RNA/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipídeos/química
3.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865164

RESUMO

Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.

4.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993158

RESUMO

To prospectively determine whether brain tumors will respond to immune checkpoint inhibitors (ICIs), we developed a novel mRNA vaccine as a viral mimic to elucidate cytokine release from brain cancer cells in vitro. Our results indicate that cytokine signatures following mRNA challenge differ substantially from ICI responsive versus non-responsive murine tumors. These findings allow for creation of a diagnostic assay to quickly assess brain tumor immunogenicity, allowing for informed treatment with ICI or lack thereof in poorly immunogenic settings.

5.
medRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993772

RESUMO

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

6.
Cells ; 11(12)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741103

RESUMO

The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Movimento Celular , Imunoterapia Adotiva/métodos , Neoplasias/patologia , Linfócitos T , Microambiente Tumoral
7.
Neuro Oncol ; 22(9): 1249-1261, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32391559

RESUMO

In oncology, "immunotherapy" is a broad term encompassing multiple means of utilizing the patient's immune system to combat malignancy. Prominent among these are immune checkpoint inhibitors, cellular therapies including chimeric antigen receptor T-cell therapy, vaccines, and oncolytic viruses. Immunotherapy for glioblastoma (GBM) has had mixed results in early trials. In this context, the past, present, and future of immune oncology for the treatment of GBM was discussed by clinical, research, and thought leaders as well as patient advocates at the first annual Remission Summit in 2019. The goal was to use current knowledge (published and unpublished) to identify possible causes of treatment failures and the best strategies to advance immunotherapy as a treatment modality for patients with GBM. The discussion focuses on past failures, current limitations, failure analyses, and proposed best practices moving forward.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Vírus Oncolíticos , Adulto , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Imunoterapia
8.
Nat Commun ; 10(1): 3029, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292444

RESUMO

With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future.


Assuntos
Bioimpressão/métodos , Técnicas de Cultura de Células/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Matriz Extracelular , Géis/química , Teste de Materiais , Metacrilatos/química , Camundongos , Células NIH 3T3
9.
ACS Biomater Sci Eng ; 2(10): 1787-1795, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33440476

RESUMO

The demands of tissue engineering have driven a tremendous amount of research effort in 3D tissue culture technology and, more recently, in 3D printing. The need to use 3D tissue culture techniques more broadly in all of cell biology is well-recognized, but the transition to 3D has been impeded by the convenience, effectiveness, and ubiquity of 2D culture materials, assays, and protocols, as well as the lack of 3D counterparts of these tools. Interestingly, progress and discoveries in 3D bioprinting research may provide the technical support needed to grow the practice of 3D culture. Here we investigate an integrated approach for 3D printing multicellular structures while using the same platform for 3D cell culture, experimentation, and assay development. We employ a liquid-like solid (LLS) material made from packed granular-scale microgels, which locally and temporarily fluidizes under the focused application of stress and spontaneously solidifies after the applied stress is removed. These rheological properties enable 3D printing of multicellular structures as well as the growth and expansion of cellular structures or dispersed cells. The transport properties of LLS allow molecular diffusion for the delivery of nutrients or small molecules for fluorescence-based assays. Here, we measure viability of 11 different cell types in the LLS medium, we 3D print numerous structures using several of these cell types, and we explore the transport properties in molecular time-release assays.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26465520

RESUMO

Changes in cell size often accompany multicellular motion in tissue, and cell number density is known to strongly influence collective migration in monolayers. Density fluctuations in other forms of active matter have been explored extensively, but not the potential role of density fluctuations in collective cell migration. Here we investigate collective motion in cell monolayers, focusing on the divergent component of the migration velocity field to probe density fluctuations. We find spatial patterns of diverging and converging cell groups throughout the monolayers, which oscillate in time with a period of approximately 3-4 h. Simultaneous fluorescence measurements of a cytosol dye within the cells show that fluid passes between groups of cells, facilitating these oscillations in cell density. Our findings reveal that cell-cell interactions in monolayers may be mediated by intercellular fluid flow.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Animais , Carbenoxolona/farmacologia , Contagem de Células , Movimento Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Cães , Células Epiteliais/efeitos dos fármacos , Corantes Fluorescentes , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Células Madin Darby de Rim Canino , Imagem Óptica , Periodicidade , Pressão
11.
Biotechnol Lett ; 30(5): 801-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18071637

RESUMO

A low load tribology technique for studying the effects of friction on living cells was developed. Results show a direct relationship between the coefficient of friction (COF) and the extent of cell damage. The COF, mu, for a glass pin on an intact layer of human corneal epithelial cells is determined to be on the order of mu = 0.05 +/- 0.02 (n = 16). The correlations between applied normal load and extent of cell damage, as well as between number of reciprocation cycles and cell damage, are reported. It is also found that cell damage can occur when a loading force as low as 0.5 mN is applied, although the cells appear to be intact.


Assuntos
Células Epiteliais/fisiologia , Epitélio Corneano/fisiologia , Linhagem Celular , Sobrevivência Celular , Fricção , Humanos , Microscopia de Interferência , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA