RESUMO
Exon 20 insertion (Ex20Ins) mutations are the third most prevalent epidermal growth factor receptor (EGFR) activating mutation and the most prevalent HER2 mutation in non-small cell lung cancer (NSCLC). Novel therapeutics for the patients with Ex20Ins mutations are urgently needed, due to their poor responses to the currently approved EGFR and HER2 inhibitors. Here we report the discovery of highly potent and broadly effective EGFR and HER2 Ex20Ins mutant inhibitors. The co-crystal structure of compound 1 b in complex with wild type EGFR clearly revealed an additional hydrophobic interaction of 4-fluorobenzene ring within a deep hydrophobic pocket, which has not been widely exploited in the development of EGFR and HER2 inhibitors. As compared with afatinib, compound 1 a exhibited superior inhibition of proliferation and signaling pathways in Ba/F3 cells harboring either EGFR or HER2 Ex20Ins mutations, and in the EGFR P772_H773insPNP patient-derived lung cancer cell line DFCI127. Our study identifies promising strategies for development of EGFR and HER2 Ex20Ins mutant inhibitors.
Assuntos
Fluorbenzenos/química , Fluorbenzenos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Éxons , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Simulação de Acoplamento Molecular , Mutação , Receptor ErbB-2/química , Receptor ErbB-2/genéticaRESUMO
While many studies have demonstrated that canonical NF-κB signaling is a central pathway in lung tumorigenesis, the role of non-canonical NF-κB signaling in lung cancer remains undefined. We observed frequent nuclear accumulation of the non-canonical NF-κB component p100/p52 in human lung adenocarcinoma. To investigate the impact of non-canonical NF-κB signaling on lung carcinogenesis, we employed transgenic mice with doxycycline-inducible expression of p52 in airway epithelial cells. p52 over-expression led to increased tumor number and progression after injection of the carcinogen urethane. Gene expression analysis of lungs from transgenic mice combined with in vitro studies suggested that p52 promotes proliferation of lung epithelial cells through regulation of cell cycle-associated genes. Using gene expression and patient information from The Cancer Genome Atlas (TCGA) database, we found that expression of p52-associated genes was increased in lung adenocarcinomas and correlated with reduced survival, even in early stage disease. Analysis of p52-associated gene expression in additional human lung adenocarcinoma datasets corroborated these findings. Together, these studies implicate the non-canonical NF-κB component p52 in lung carcinogenesis and suggest modulation of p52 activity and/or downstream mediators as new therapeutic targets.
Assuntos
Adenocarcinoma de Pulmão/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Subunidade p52 de NF-kappa B/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/patologia , Animais , Proliferação de Células , Progressão da Doença , Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Camundongos Transgênicos , Pessoa de Meia-Idade , Subunidade p52 de NF-kappa B/análise , Prognóstico , Carga TumoralRESUMO
INTRODUCTION: Tyrosine kinase inhibitors (TKIs) have been developed to treat patients with EGFR-mutant lung cancers. However, the therapeutic efficacy of TKIs in patients with uncommon EGFR mutations remains unclear. METHODS: Next-generation sequencing was performed on a patient's lung adenocarcinoma tumor sample, revealing rare combined in cis (on the same allele) EGFR mutations. Stable Ba/F3 and NIH-3T3 cell lines harboring the mutations were established to investigate the effect of first-, second-, and third-generation EGFR TKIs on cell proliferation by MTS assay and EGFR phosphorylation by Western blotting. RESULTS: EGFR L858M/L861Q mutations in cis were detected in the tumor of a patient with NSCLC. The patient demonstrated primary resistance to erlotinib and was subsequently treated with afatinib, which caused tumor regression. In in vitro studies, first- and third-generation TKIs exhibited a decreased capacity to prevent EGFR phosphorylation and inhibit cell proliferation in EGFR L858M/L861Q cells compared with cells harboring the common EGFR L858R point mutation. In contrast, afatinib treatment reduced proliferation and inhibited EGFR phosphorylation in L858M/L861Q- and L858R-mutant cells at similar concentrations. CONCLUSIONS: Afatinib may be a beneficial therapeutic option for a subset of patients with lung cancer who harbor rare EGFR mutations in their tumors. Understanding how uncommon mutations affect protein structure and TKI binding will be important for identifying effective targeted therapies for these patients.
Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Antineoplásicos/uso terapêutico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinazolinas/uso terapêutico , Acrilamidas , Afatinib , Alelos , Compostos de Anilina , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Feminino , Gefitinibe , Humanos , Camundongos , Pessoa de Meia-Idade , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Mutação Puntual , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Células Tumorais CultivadasRESUMO
Several studies have demonstrated that NF-κB activation is common in lung cancer; however, the mechanistic links between NF-κB signaling and tumorigenesis remain to be fully elucidated. We investigated the function of NF-κB signaling in epidermal growth factor receptor (EGFR)-mutant lung tumors using a transgenic mouse model with doxycycline (dox)-inducible expression of oncogenic EGFR in the lung epithelium with or without a dominant inhibitor of NF-κB signaling. NF-κB inhibition resulted in a significant reduction in tumor burden in both EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant tumors. However, NF-κB inhibition did not alter epithelial cell survival in vitro or in vivo, and no changes were detected in activation of EGFR downstream signaling pathways. Instead, we observed an influx of inflammatory cells (macrophages and neutrophils) in the lungs of mice with oncogenic EGFR expression that was blocked in the setting of NF-κB inhibition. To investigate whether inflammatory cells play a role in promoting EGFR-mutant lung tumors, we depleted macrophages and neutrophils during tumorigenesis and found that neutrophil depletion had no effect on tumor formation, but macrophage depletion caused a significant reduction in tumor burden. Together, these data suggest that epithelial NF-κB signaling supports carcinogenesis in a non-cell autonomous manner in EGFR-mutant tumors through recruitment of pro-tumorigenic macrophages.
RESUMO
Although epithelial NF-κB signaling is important for lung carcinogenesis, NF-κB inhibitors are ineffective for cancer treatment. To explain this paradox, we studied mice with genetic deletion of IKKß in myeloid cells and found enhanced tumorigenesis in Kras(G12D) and urethane models of lung cancer. Myeloid-specific inhibition of NF-κB augmented pro-IL-1ß processing by cathepsin G in neutrophils, leading to increased IL-1ß and enhanced epithelial cell proliferation. Combined treatment with bortezomib, a proteasome inhibitor that blocks NF-κB activation, and IL-1 receptor antagonist reduced tumor formation and growth in vivo. In lung cancer patients, plasma IL-1ß levels correlated with poor prognosis, and IL-1ß increased following bortezomib treatment. Together, our studies elucidate an important role for neutrophils and IL-1ß in lung carcinogenesis and resistance to NF-κB inhibitors.
Assuntos
Interleucina-1beta/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/antagonistas & inibidores , Neutrófilos/metabolismo , Animais , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Análise de SobrevidaRESUMO
Nuclear Factor (NF)-κB is positioned to provide the interface between COPD and carcinogenesis through regulation of chronic inflammation in the lungs. Using a tetracycline-inducible transgenic mouse model that conditionally expresses activated IκB kinase ß (IKKß) in airway epithelium (IKTA), we found that sustained NF-κB signaling results in chronic inflammation and emphysema by 4 months. By 11 months of transgene activation, IKTA mice develop lung adenomas. Investigation of lung inflammation in IKTA mice revealed a substantial increase in M2-polarized macrophages and CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Depletion of alveolar macrophages in IKTA mice reduced Tregs, increased lung CD8+ lymphocytes, and reduced tumor numbers following treatment with the carcinogen urethane. Alveolar macrophages from IKTA mice supported increased generation of inducible Foxp3+ Tregs ex vivo through expression of TGFß and IL-10. Targeting of TGFß and IL-10 reduced the ability of alveolar macrophages from IKTA mice to induce Foxp3 expression on T cells. These studies indicate that sustained activation of NF-κB pathway links COPD and lung cancer through generation and maintenance of a pro-tumorigenic inflammatory environment consisting of alternatively activated macrophages and regulatory T cells.
Assuntos
Epitélio/imunologia , Inflamação/imunologia , Neoplasias Pulmonares/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Animais , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Quinase I-kappa B/fisiologia , Imunossupressores/imunologia , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis.