Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Rep ; 14(1): 11991, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796487

RESUMO

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Assuntos
Alginatos , Reatores Biológicos , Condrogênese , Hidrogéis , Células-Tronco Mesenquimais , Microesferas , Engenharia Tecidual , Alginatos/química , Engenharia Tecidual/métodos , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Cartilagem/metabolismo , Cartilagem/citologia , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
2.
Chem Biol Interact ; 351: 109687, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34653396

RESUMO

Because spermatogonia transmit genetic information across generations, their DNA must be protected from environmental damages, including exposure to zinc oxide nanoparticles (ZnO NPs), which are frequently used in modern technology. Here, we used an in vitro system enriched for spermatogonia and exposed them to 10 and 20 µg/ml ZnO NPs for one/seven days. We did not detect any significant cell death, chromosomal instability, or DNA fragmentation in the spermatogonia treated with the ZnO NPs following one-day treatment with 10 or 20 µg/ml ZnO NPs. However, ZnO NPs (both 10 and 20 µg/ml) induced chromosomal instability in the spermatogonia after seven days of treatment. Moreover, one-day exposure to these NPs induced reactive oxygen species (ROS) generation and upregulation of apoptotic pathway-related genes p53, Caspase3 and Il6, as an inflammatory factor. Taken together, our study provides preliminary evidence for possible damages induced by low concentrations of ZnO NPs in spermatogonia. We should pay increased attention when using these NPs because of the silent damages in spermatogonia that can be transmitted to the next generation and cause severe effects. However, more data and validation of these results are required to determine the extent of this concern.


Assuntos
Nanopartículas Metálicas/toxicidade , Espermatogônias/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Proteína Quinase CDC2/metabolismo , Caspase 3/metabolismo , Instabilidade Cromossômica/efeitos dos fármacos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Cell Tissue Bank ; 22(2): 207-223, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33387152

RESUMO

Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Animais , Humanos , Medicina Regenerativa , Esquizofrenia/terapia , Transplante de Células-Tronco
4.
Adv Exp Med Biol ; 1326: 159-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926346

RESUMO

Rheumatoid arthritis as a common autoimmune inflammatory disorder with unknown etiology can affect 0.5-1% of adults in developed countries. It involves more than just the patient's joints and can be accompanied by several comorbidities and affect cardiovascular, pulmonary, and some other systems of the human body. Although cytokine-mediated pathways are mentioned to have a central role in RA pathogenesis, adaptive and innate immune systems and intracellular signaling pathways all have important roles in this process. Non-steroidal anti-inflammatory drugs, glucocorticoids, conventional disease-modifying anti-rheumatic drugs, and biological agents are some mentioned medications used for RA. They are accompanied by some adverse effects and treatment failures which elucidates the needing for novel and more powerful therapeutic approaches. Stem cell-based therapies and their beneficial effects on therapeutic processes of different diseases have been founded so far. They can be an alternative and promising therapeutic approach for RA, too; due to their effects on immune responses of the disease. This review, besides some explanations about RA characteristics, addresses the outcome of the stem cell-based therapies including mesenchymal stem cell transplantation and hematopoietic stem cell transplantation for RA and explains their effects on the disease improvement.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Transplante de Células-Tronco Mesenquimais , Artrite Reumatoide/tratamento farmacológico , Humanos , Imunidade
5.
Hum Gene Ther ; 32(21-22): 1330-1345, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33307949

RESUMO

Breast cancer is a heterogeneous disease, which is the consequence of several genetic and environmental factors. Also, it is one of the most common causes of cancer death and second leading cancer among women all around the world. Therefore, it is necessary to develop novel therapeutic approaches useful for the successful treatment of breast cancer. As conventional treatments had limited success, alternative approaches for the treatment of breast cancer have been applied in recent years. Hence, the molecular basis of breast cancer has provided the opportunity of using genetic materials for therapeutic uses. In this regard, gene therapy as one of the potentially efficient and beneficial treatments among various techniques became a popular treatment for different cancers, especially breast cancer. Accordingly, there are plenty of targets available for gene therapy of breast cancer. Gene therapy strategies have the potential to correct molecular defects that contributed to the cancer progression. These techniques should selectively target tumor cells without affecting normal cells. Moreover, data of clinical trials in gene therapy for breast cancer indicated that this approach has little toxicity compared to other therapeutic approaches. In this study, different aspects of breast neoplasm, gene therapy techniques, challenges, and recent developments will be mentioned.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Terapia Genética , Humanos
6.
Cell Regen ; 9(1): 20, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258056

RESUMO

Systemic sclerosis is a rare chronic autoimmune disease with extensive microvascular injury, damage of endothelial cells, activation of immune responses, and progression of tissue fibrosis in the skin and various internal organs. According to epidemiological data, women's populations are more susceptible to systemic sclerosis than men. Until now, various therapeutic options are employed to manage the symptoms of the disease. Since stem cell-based treatments have developed as a novel approach to rescue from several autoimmune diseases, it seems that stem cells, especially mesenchymal stem cells as a powerful regenerative tool can also be advantageous for systemic sclerosis treatment via their remarkable properties including immunomodulatory and anti-fibrotic effects. Accordingly, we discuss the contemporary status and future perspectives of mesenchymal stem cell transplantation for systemic sclerosis.

7.
Cell Tissue Bank ; 21(3): 405-425, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32588163

RESUMO

Acute respiratory infections as one of the most common problems of healthcare systems also can be considered as an important reason for worldwide morbidity and mortality from infectious diseases. Coronaviruses are a group of well-known respiratory viruses that can cause acute respiratory infections. At the current state, the 2019 novel coronavirus is cited as the most worldwide problematic agent for the respiratory system. According to investigations, people with old age and underlying diseases are at higher risk of 2019 novel coronavirus infection. Indeed, they may show a severe form of the disease (with severe acute respiratory infections). Based on the promising role of cell therapy and regenerative medicine approaches in the treatment of several life-threatening diseases, it seems that applying cell-based approaches can also be a hopeful strategy for improving subjects with severe acute respiratory infections caused by the 2019 novel coronavirus. Herein, due to the amazing effects of mesenchymal stem cells in the treatment of various diseases, this review focuses on the auxiliary role of mesenchymal stem cells to reduce inflammatory processes of acute respiratory infections caused by the 2019 novel coronavirus.


Assuntos
Infecções por Coronavirus/terapia , Inflamação/terapia , Células-Tronco Mesenquimais , Pneumonia Viral/terapia , Regeneração , COVID-19 , Infecções por Coronavirus/complicações , Humanos , Inflamação/etiologia , Pandemias , Pneumonia Viral/complicações , Medicina Regenerativa/métodos
8.
Mater Sci Eng C Mater Biol Appl ; 109: 110603, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228891

RESUMO

Cardiovascular diseases (CVD) are a major cause of mortality worldwide. Accessibility to heart tissue is limited due to sampling issues and lack of appropriate culture conditions. In addition, animal models are not an ideal choice for physiological, pharmacological, and fundamental evaluations in the cardiovascular field due to interspecies differences. Hence, there is an inevitable need for functional in vitro cardiac models. In this study, we have synthesized a novel electroconductive scaffold comprised of cardiac extracellular matrix (ECM) derived pre-cardiogel (pCG) blended with polypyrrole (Ppy). Our data revealed that 2.5% (w/v) pyrrole (Py) had the highest possible Py ratio that provided pCG-Ppy gel formation. The prepared mixture was fabricated into a scaffold by using the freeze-dried method. The scaffolds had open interconnected pores that ranged from 55 ± 24 µm for the cardiogel (CG)-Ppy to 74 ± 26 µm for the CG scaffolds, with no alterations in vital ECM components of collagen, polysaccharides, and glycosaminoglycans (GAGs). Incorporation of Ppy increased the CG stiffness with a final complex modulus from 80 pa to 140 pa. The CG-Ppy group had significantly greater electrical conductivity than the CG group. Scaffolds supported neonatal mouse cardiomyocyte (NMCM) adhesion, viability, cardiac-specific gene expression, and spontaneous beating up to 14 days after seeding. Among the fabricated hydrogels, the CG-Ppy group resulted in the synchronous beating of cardiomyocyte clusters and upregulation of cardiac genes involved in cardiac muscle contraction (cardiac troponin T [cTNT]) and cardiomyocyte electrical coupling (connexin 43 [Cx43]). Thus, this ECM-based electro-conductive scaffold might provide a promising substrate for constructing in vitro cardiac models for drug testing, disease modeling, developmental studies, and cardiac regenerative approaches.


Assuntos
Condutividade Elétrica , Matriz Extracelular/química , Contração Miocárdica , Miocárdio/química , Miócitos Cardíacos/metabolismo , Alicerces Teciduais/química , Animais , Sobrevivência Celular , Camundongos , Miócitos Cardíacos/citologia , Ovinos
9.
J Biomed Mater Res A ; 108(4): 938-946, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31894891

RESUMO

Cartilage tissue engineering is the interdisciplinary science that will help to improve cartilage afflictions, such as arthrosis, arthritis, or following joints traumatic injuries. In the present work, we developed an injectable hydrogel which derived from decellularized extracellular matrix of sheep cartilage. Successful decellularization was evaluated by measuring the DNA, glycosaminoglycans (GAG), collagen contents, and histological analyses. There was a minor difference in GAG and collagen contents among natural cartilage and decellularized tissue as well as ultimate hydrogel. Rheological analysis showed that the temperature and gelation time of prepared hydrogel were 37°C and between 5 and 7 min, respectively. Mechanical properties evaluation indicated a storage modulus of 20 kPa. The results show that prepared hydrogel possessed cell-friendly microenvironment as confirmed via calcein staining and MTT assay. Also, cells were able to proliferate which observed by H&E and alcian blue staining. Cell attachment and proliferation at the surface of the decellularized hydrogel was apparent by Scanning Electron Microscope (SEM) images and microphotographs. Furthermore, the cells embedded within the hydrogel were able to differentiate into chondrocyte with limited evidence of hypertrophy and osteogenesis in utilized cells which proved by SOX9, CoL2, ACAN, and also CoL1 and CoL10 gene expression levels. In summary, the results suggest that developed novel injectable hydrogel from decellularized cartilage could be utilized as a promising substrate for cartilage tissue engineering applications.


Assuntos
Cartilagem Articular/fisiologia , Matriz Extracelular/metabolismo , Hidrogéis/farmacologia , Articulação do Joelho/fisiologia , Regeneração/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Coelhos , Ovinos
10.
Hum Reprod ; 34(12): 2430-2442, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886487

RESUMO

STUDY QUESTION: Could small molecules (SM) which target (or modify) signaling pathways lead to increased proliferation of undifferentiated spermatogonia following chemotherapy? SUMMARY ANSWER: Inhibition of transforming growth factor-beta (TGFb) signaling by SM can enhance the proliferation of undifferentiated spermatogonia and spermatogenesis recovery following chemotherapy. WHAT IS KNOWN ALREADY: Spermatogonial stem cells (SSCs) hold great promise for fertility preservation in prepubertal boys diagnosed with cancer. However, the low number of SSCs limits their clinical applications. SM are chemically synthesized molecules that diffuse across the cell membrane to specifically target proteins involved in signaling pathways, and studies have reported their ability to increase the proliferation or differentiation of germ cells. STUDY DESIGN, SIZE, DURATION: In our experimental study, spermatogonia were collected from four brain-dead individuals and used for SM screening in vitro. For in vivo assessments, busulfan-treated mice were treated with the selected SM (or vehicle, the control) and assayed after 2 (three mice per group) and 5 weeks (two mice per group). PARTICIPANTS/MATERIALS, SETTING, METHODS: We investigated the effect of six SM on the proliferation of human undifferentiated spermatogonia in vitro using a top-bottom approach for screening. We used histological, hormonal and gene-expression analyses to assess the effect of selected SM on mouse spermatogenesis. All experiments were performed at least in triplicate and were statistically evaluated by Student's t-test and/or one-way ANOVA followed by Scheffe's or Tukey's post-hoc. MAIN RESULTS AND THE ROLE OF CHANCE: We found that administration of SB431542, as a specific inhibitor of the TGFb1 receptor (TGFbR1), leads to a two-fold increase in mouse and human undifferentiated spermatogonia proliferation. Furthermore, injection of SB to busulfan-treated mice accelerated spermatogenesis recovery as revealed by increased testicular size, weight and serum level of inhibin B. Moreover, SB administration accelerated both the onset and completion of spermatogenesis. We demonstrated that SB promotes proliferation in testicular tissue by regulating the cyclin-dependent kinase (CDK) inhibitors 4Ebp1 and P57 (proliferation inhibitor genes) and up-regulating Cdc25a and Cdk4 (cell cycle promoting genes). LIMITATIONS, REASONS FOR CAUTION: The availability of human testis was the main limitation in this study. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study to report acceleration of spermatogenesis recovery following chemotherapy by administration of a single SM. Our findings suggest that SB is a promising SM and should be assessed in future clinical trials for preservation of fertility in men diagnosed with cancer or in certain infertility cases (e.g. oligospermia). STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Royan Institute and National Institute for Medical Research Development (NIMAD, grant no 963337) granted to H.B. The authors have no conflict of interest to report.


Assuntos
Benzamidas/farmacologia , Dioxóis/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Adolescente , Adulto , Animais , Feminino , Preservação da Fertilidade , Humanos , Masculino , Camundongos , Cultura Primária de Células , Espermatogônias/citologia
11.
Biofabrication ; 12(1): 015021, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31658444

RESUMO

Mesenchymal stem cells (MSCs) are considered primary candidates for treating complex bone defects in cell-based therapy and tissue engineering. Compared with monolayer cultures, spheroid cultures of MSCs (mesenspheres) are favorable due to their increased potential for differentiation, extracellular matrix (ECM) synthesis, paracrine activity, and in vivo engraftment. Here, we present a strategy for the incorporation of microparticles for the fabrication of osteogenic micro-tissues from mesenspheres in a cost-effective and scalable manner. A facile method was developed to synthesize mineral microparticles with cell-sized spherical shape, biphasic calcium phosphate composition (hydroxyapatite and ß-tricalcium phosphate), and a microporous structure. Calcium phosphate microparticles (CMPs) were incorporated within the mesenspheres through mixing with the single cells during cell aggregation. Interestingly, the osteogenic genes were upregulated significantly (collagen type 1 (Col 1) 30-fold, osteopontin (OPN) 10-fold, and osteocalcin (OCN) 3-fold) after 14 days of culture with the incorporated CMPs, while no significant upregulation was observed with the incorporation of gelatin microparticles. The porous structure of the CMPs was exploited for loading and sustained release of an angiogenic small molecule. Dimethyloxaloylglycine (DMOG) was loaded efficiently onto the CMPs (loading efficiency: 65.32 ± 6%) and showed a sustained release profile over 12 days. Upon incorporation of the DMOG-loaded CMPs (DCMPs) within the mesenspheres, a similar osteogenic differentiation and an upregulation in angiogenic genes (VEGF 5-fold and kinase insert domain (KDR) 2-fold) were observed after 14 days of culture. These trends were also observed in immunostaining analysis. To evaluate scalable production of the osteogenic micro-tissues, the incorporation of microparticles was performed during cell aggregation in a spinner flask. The DCMPs were efficiently incorporated and directed the mesenspheres toward osteogenesis and angiogenesis. Finally, the DCMP mesenspheres were loaded within a three-dimensional printed cell trapper and transplanted into a critical-sized defect in a rat model. Computed tomography and histological analysis showed significant bone formation with blood vessel reconstruction after 8 weeks in this group. Taken together, we provide a scalable and cost-effective approach for fabrication of osteogenic micro-tissues, as building blocks of macro-tissues, that can address the large amounts of cells required for cell-based therapies.


Assuntos
Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Animais , Bioimpressão/economia , Proliferação de Células , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Osteogênese , Ratos , Ratos Wistar , Engenharia Tecidual/economia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Alicerces Teciduais/economia
12.
J Biomed Mater Res A ; 107(9): 2040-2052, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31077544

RESUMO

Large bone defects treatment is one of the challenges in current bone tissue engineering approaches. Various strategies have been proposed to address this issue, among which, prevascularization by coculturing of angiogenic and osteogenic cells on the scaffolds can alleviate this problem. In the present study, modified fibrous scaffolds were prepared by electrospinning and subsequent ultrasonication of polycaprolactone (PCL) containing nano-hydroxyapatite (n-HA), with/without nano-zinc oxide (n-ZnO), and polyethylene oxide [PEO] as a sacrificial agent. The physical, mechanical, and chemical characteristics of the scaffolds were evaluated. The results showed the presence of n-ZnO, which in turn increased Young's module of the scaffolds from 5.5 ± 0.67 to 6.7 ± 1.77 MPa. Moreover, MTT, SEM, alkaline phosphatase (ALP) activity, chicken embryo chorioallantoic membrane (CAM) assay, and real-time RT-PCR were utilized to investigate the biocompatibility, cell adhesion and infiltration, osteoconductivity, angiogenic properties, and expression of osteogenic and angiogenic related genes. ALP assay showed that the highest enzyme activity was noted when the modified scaffolds containing n-ZnO were seeded with HUVEC:hBMSC at the cell ratio of 1:5. CAM assay showed induction of angiogenesis for the scaffolds containing n-ZnO. Real-time RT-PCR results showed significant upregulation of angiogenic related genes. Thus, the scaffolds containing n-ZnO may have great potential for osteogenesis and angiogenesis in tissue engineering applications.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Neovascularização Fisiológica , Osteogênese , Poliésteres/química , Alicerces Teciduais/química , Óxido de Zinco/química , Animais , Embrião de Galinha , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco Mesenquimais/citologia
13.
J Biomed Mater Res B Appl Biomater ; 107(1): 50-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29468802

RESUMO

Critical-sized bone defects constitute a major health issue in orthopedics and usually cause mal-unions due to an inadequate number of migrated progenitor cells into the defect site or their incomplete differentiation into osteogenic precursor cells. The current study aimed to develop an optimized osteoinductive and angiogenic scaffold by incorporation of strontium (Sr) and bioglass (BG) into gelatin/nano-hydroxyapatite (G/nHAp) seeded with bone marrow mesenchymal stem cells to enhance bone regeneration. The scaffolds were fabricated by a freeze-drying technique and characterized in terms of morphology, structure, porosity and degradation rate. The effect of fabricated scaffolds on cell viability, attachment and differentiation into osteoblastic lineages was evaluated under in vitro condition. Micro computed tomography scan, histological and histomorphometric analysis were performed after implantation of scaffolds into the radial bone defects in rat. RT-PCR analysis showed that G/nHAp/BG/Sr scaffold significantly increased the expression level of osteogenic and angiogenic markers in comparison to other groups (P < 0.05). Moreover, the defects treated with the BMSCs-seeded scaffolds showed superior bone formation and mechanical properties compared to the cell-free scaffolds 4 and 12 weeks post-implantation. Finally, the BMSCs-seeded G/nHAp/BG/Sr scaffold showed the greatest bone regenerative capacity which was more similar to autograft. It is concluded that combination of Sr, BG, and nHAp can synergistically enhance the bone regeneration process. In addition, our results demonstrated that the BMSCs have the potential to considerably increase the bone regeneration ability of osteoinductive scaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 50-64, 2019.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea , Células Imobilizadas , Durapatita/química , Vidro/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Nanoestruturas/química , Rádio (Anatomia) , Estrôncio/química , Aloenxertos , Animais , Células da Medula Óssea/patologia , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Masculino , Células-Tronco Mesenquimais/patologia , Rádio (Anatomia)/lesões , Rádio (Anatomia)/metabolismo , Rádio (Anatomia)/patologia , Ratos , Ratos Wistar
14.
J Mater Sci Mater Med ; 30(1): 1, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30564959

RESUMO

Hypoxia-inducible factor-1α (HIF-1α), a well-studied angiogenesis pathway, plays an essential role in angiogenesis-osteogenesis coupling. Targeting the HIF-1a pathway frequently leads to successful reconstruction of large-sized bone defects through promotion of angiogenesis. Dimethyloxalylglycine (DMOG) small molecule regulates the stability of HIF-1α at normal oxygen tension by mimicking hypoxia, which subsequently accelerates angiogenesis. The current study aims to develop a novel construct by seeding adipose derived mesenchymal stem cells (ADMSCs) onto a scaffold that contains DMOG to induce angiogenesis and regeneration of a critical size calvarial defect in a rat model. The spongy scaffolds have been synthesized in the presence and absence of DMOG and analyzed in terms of morphology, porosity, pore size, mechanical properties and DMOG release profile. The effect of DMOG delivery on cellular behaviors of adhesion, viability, osteogenic differentiation, and angiogenesis were subsequently evaluated under in vitro conditions. Histological analysis of cell-scaffold constructs were also performed following transplantation into the calvarial defect. Physical characteristics of fabricated scaffolds confirmed higher mechanical strength and surface roughness of DMOG-loaded scaffolds. Scanning electron microscopy (SEM) images and MTT assay demonstrated the attachment and viability of ADMSCs in the presence of DMOG, respectively. Osteogenic activity of ADMSCs that included alkaline phosphatase (ALP) activity and calcium deposition significantly increased in the DMOG-loaded scaffold. Computed tomography (CT) imaging combined with histomorphometry and immunohistochemistry analysis showed enhanced bone formation and angiogenesis in the DMOG-loaded scaffolds. Therefore, spongy scaffolds that contained DMOG and had angiogenesis ability could be utilized to enhance bone regeneration of large-sized bone defects.


Assuntos
Ácido Algínico/química , Aminoácidos Dicarboxílicos/farmacologia , Desenvolvimento Ósseo , Fosfatos de Cálcio/química , Gelatina/química , Alicerces Teciduais , Aminoácidos Dicarboxílicos/administração & dosagem , Animais , Materiais Biocompatíveis , Osso e Ossos/lesões , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular , Liberação Controlada de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Células-Tronco Mesenquimais , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Biomaterials ; 154: 99-112, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29127860

RESUMO

Bioengineering of whole hearts using human embryonic stem cells (hESCs)-derived cardiovascular progenitor cells (CPCs) and natural matrices is a promising approach to overcome organ donor shortage threatening millions of patients awaiting for heart transplantation. Here, we developed a novel strategy for generation of heart constructs by repopulating engineered decellularized rat hearts using hESCs-derived CPCs. Careful expansion of CPCs in a scalable stirred-suspension bioreactor combined with step-wise seeding (60 million cells in 3 steps of 20 million per 1.5 h) onto decellularized hearts containing immobilized basic fibroblast growth factor (bFGF) resulted in improved retention of CPCs and differentiation to cardiomyocytes, smooth muscle cells and endothelial cells as evaluated by immunohistochemistry and qRT-PCR. We observed spontaneous and synchronous contractions of humanized hearts after 12 days of perfusion as well as advanced alignment of myofilaments. Our study provides a robust platform for generation of artificial human hearts and resolves major bottlenecks hindering further development of this technology.


Assuntos
Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Coração/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Ratos Wistar
16.
Tissue Cell ; 49(4): 495-502, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28601197

RESUMO

OBJECTIVE: Musculodegenerative diseases threaten the life of many patients in the world. Since drug administration is not efficient in regeneration of damaged tissues, stem cell therapy is considered as a good strategy to restore the lost cells. Since the efficiency of myogenic differentiation potential of human Chorion- derived Mesenchymal Stem Cells (C-MSCs) has not been addressed so far; we set out to evaluate myogenic differentiation property of these cells in comparison with Umbilical Cord Blood- derived Mesenchymal Stem Cells (UCB-MSCs) in the presence of 5-azacytidine. MATERIALS & METHODS: To do that, neonate placenta Umbilical Cord Blood were transferred to the lab. After characterization of the isolated cells using flowcytometry and multilineage differentiation capacity, the obtained Mesenchymal Stem Cells were cultured in DMEM/F12 supplemented with 2% FBS and 10µM of 5-azacytidine to induce myogenic differentiation. Real-time PCR and immunocytochemistry were used to assess the myogenic properties of the cells. RESULTS: Our data showed that C-MSCs and UCB-MSCs were spindle shape in morphology. They were positive for CD90, CD73 and CD44 antigens, and negative for hematopoietic markers. They also differentiated into osteoblast and adipoblast lineages. Real-time PCR results showed that the cells could express MyoD, desmin and α-MHC at the end of the first week (P<0.05). No significant upregulation was detected in the expression of GATA-4 in both groups. Immunocytochemical staining revealed the expression of Desmin, cTnT and α-MHC. CONCLUSIONS: Results showed that these cells are potent to differentiate into myoblast- like cells. An upregulation in the expression of some myogenic markers (desmin, α- MHC) was observed in C-MSCs in comparison with UCB-MSCs.


Assuntos
Diferenciação Celular , Córion/metabolismo , Sangue Fetal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular , Córion/citologia , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia
17.
J Biol Chem ; 292(25): 10520-10533, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28461333

RESUMO

Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox (Msx) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx-regulated genes (Bmp4, Fgf8, and keratin 14 (K14)) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx-overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8, and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx-transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration.


Assuntos
Células da Medula Óssea/metabolismo , Membro Posterior/fisiologia , Proteínas de Homeodomínio/biossíntese , Fator de Transcrição MSX1/biossíntese , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Regeneração , Aloenxertos , Animais , Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 4/genética , Proliferação de Células/genética , Fator 8 de Crescimento de Fibroblasto/biossíntese , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas de Homeodomínio/genética , Queratina-14/biossíntese , Queratina-14/genética , Fator de Transcrição MSX1/genética , Camundongos , Transdução Genética
18.
Iran J Basic Med Sci ; 19(12): 1299-1307, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28096962

RESUMO

OBJECTIVES: Maternal high-fat diet has been shown to have deleterious effects on the offspring bones. However, there is no study to assess the effects of type and amount of maternal dietary oil in an isocaloric diet, with focus on extra virgin olive oil (EVOO). The objective of the current study was to test the hypothesis that type of maternal dietary oil has more effects than its amount in an isocaloric diet during gestation and lactation on bone genes expression in offspring in adolescence. MATERIALS AND METHODS: Virgin female C57BL/6 mice were impregnated and fed either the AIN 93G diet (received 16% of calories as soybean oil, as a control diet, or EVOO) or a high fat AIN 93G diet (received 45% of calories as soybean oil or EVOO) from the time of vaginal plug confirmation until offspring's weaning. RESULTS: After adjusting for the amount of oils, osteoprotegerin/receptor activator of nuclear factor NF-κB ligand (OPG/RANK-L) and OPG expressions were 6.1- and 2.8-folds higher in offspring born to EVOO compared with soybean oil-fed mothers. OPG, beta-catenin, and OPG/RANK-L expression were 88%, 94%, and 70% lower in offspring born to the 45% oil-fed mothers compared with the 16% group. In contrast, peroxisome proliferator-activated receptor gamma-2 (PPARγ2) gene expression was higher in the 45% oil group, adjusted for the types of oil. CONCLUSION: Maternal EVOO consumption, but not soybean oil increased osteoblastic gene expression, and high amounts of both oils decreased osteoblastic and increased adipogenic genes expression in adolescent offspring.

19.
Mol Neurobiol ; 53(3): 1862-1872, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25790953

RESUMO

Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Córion/citologia , Células-Tronco Mesenquimais/citologia , Neurônios Motores/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Separação Celular , Forma Celular/efeitos dos fármacos , Gelatina/farmacologia , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Mesoderma/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Alicerces Teciduais/química
20.
Arch Iran Med ; 18(11): 770-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26497375

RESUMO

BACKGROUND: Previous studies have suggested mesenchymal stem cells (MSCs) as a suitable source for cell replacement therapy in diabetes. MSCs have successfully isolated from different adult and fetal tissues, including the pancreas. In vitro studies have shown that human fetal pancreatic stem cells could be extensively expanded and differentiated into islet-like structures. Here, we introduce a simple and cost-effective method for the generation of MSCs from the human fetal pancreas (FPMSCs). METHODS: To isolate FPMSCs, pancreata from four aborted fetuses (second trimester) were processed with short collagenase digestion. The resulting tissue fragments were transferred to a basic media (DMEM+15%FBS) without adding any growth factor. RESULTS: After 10 to14 days, fibroblast-like cells were harvested and passaged six times for further evaluations. Flow cytometry analysis and three-lineage differentiation capacity have demonstrated that these cells have MSC-like properties. We also continuously passaged samples of FPMSCs and found no evidence for chromosomal instability and morphological changes until 10th subculture. Moreover, our cell culture protocol can be easily modified and translated into a GMP-compliant one. CONCLUSION: The results of current study demonstrated that our simple and inexpensive method could yield a pure population of FPMSCs that might be suitable for transplantation.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Pâncreas/citologia , Pâncreas/embriologia , Citometria de Fluxo , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA