Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 134: 112721, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35581061

RESUMO

Addressing osteochondral defects, the objective of current study was to synthesize bilayered hydrogel, where the cartilage layer was formed by alginate (Alg)-polyacrylamide (PAAm) with and without the addition of TGF-ß3 and bone layer by laponite XLS/Alg-PAAm and characterize by in vitro and in vivo experiments. Exceeding the mechanical strength of Alg-PAAm (32.95 ± 1.23 kPa) and XLS based (317.5 ± 21.72 kPa) hydrogels, XLS/Alg-PAAm hydrogel (469.7 ± 6.1 kPa) activated macrophages towards M2 phenotype and stimulated the expression of anti-inflammatory factors. The addition of TGF-ß3 accelerated transition of macrophage polarization, especially between day 4 and 7. The expression levels of M1-related genes such as CD80, iNOS and TNF-α decreased gradually after day 4, reaching lowest values at day 13, whereas the expression levels of M2-related genes, CD206, Arg1 and STAT6 significantly increased promoting M2 macrophage polarization, which might be associated with accelerated bone repair. Moreover, bilayer structure exhibited a better cell viability as well as repairment thorough the XLS contents. In vivo histological examinations verified the significant surface regularity and hyaline like tissue formation employment, along with synchronized degradation profile of the hydrogel with tissue healing at the end of 12 weeks. A mechanically durable, biocompatible and immunocompatible hydrogel was formulated to be utilized in bone-cartilage engineering applications.


Assuntos
Alginatos , Engenharia Tecidual , Resinas Acrílicas , Alginatos/farmacologia , Condrócitos , Hidrogéis/química , Macrófagos , Silicatos , Fator de Crescimento Transformador beta3/metabolismo
2.
J Sci Food Agric ; 100(8): 3525-3535, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239766

RESUMO

BACKGROUND: Propolis exhibits therapeutic properties due to the presence of phenolic acids, esters, and flavonoids. The scope of this study was to develop a nano-vesicular formulation and establish a three-dimensional (3D) spheroid model in which lung cancer is recapitulated. RESULTS: Niosome vesicles doped with galangin-rich propolis extract were synthesized by the ether injection method using a cholesterol : surfactant mass ratio of 1 : 3 at 40 °C for 1 h. Formulated niosomes were administered to 3D lung cancer spheroid model and the cytotoxicity was compared with that of a two-dimensional (2D) setting. The galangin content was determined as 86 µg mg-1 propolis extract by ultra-performance liquid chromatography (UPLC). The particle size of loaded niosome was 151 ± 2.84 nm with a polydispersity index (PDI) of about 0.232, and an encapsulation efficiency of 70% was achieved. CONCLUSION: The decrease in cell viability and the scattering in the 3D spheroids of A549 lung cancer cells treated with propolis-loaded niosomes were notable, indicating a profound cytotoxic effect and suggesting that they can be utilized as an effective nano-vesicle. © 2020 Society of Chemical Industry.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Própole/química , Própole/farmacologia , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Humanos , Lipossomos/química , Lipossomos/farmacologia , Neoplasias Pulmonares/fisiopatologia , Nanopartículas/química , Tamanho da Partícula , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos
3.
Adv Funct Mater ; 28(26)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-30416415

RESUMO

A low-cost and easy-to-fabricate microchip remains a key challenge for the development of true point-of-care (POC) diagnostics. Cellulose paper and plastic are thin, light, flexible, and abundant raw materials, which make them excellent substrates for mass production of POC devices. Herein, a hybrid paper-plastic microchip (PPMC) is developed, which can be used for both single and multiplexed detection of different targets, providing flexibility in the design and fabrication of the microchip. The developed PPMC with printed electronics is evaluated for sensitive and reliable detection of a broad range of targets, such as liver and colon cancer protein biomarkers, intact Zika virus, and human papillomavirus nucleic acid amplicons. The presented approach allows a highly specific detection of the tested targets with detection limits as low as 102 ng mL-1 for protein biomarkers, 103 particle per milliliter for virus particles, and 102 copies per microliter for a target nucleic acid. This approach can potentially be considered for the development of inexpensive and stable POC microchip diagnostics and is suitable for the detection of a wide range of microbial infections and cancer biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA