Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transplantation ; 107(1): 98-104, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404414

RESUMO

Innate B cells are a heterogeneous group of cells that function in maintaining homeostatic levels of circulating natural antibodies and being the first line of defense against infections. Innate B-1 cells and marginal zone B cells may relocate to lymphoid follicles and differentiate into cytokine and antibody-secreting cells in T-independent and T-dependent manners. Although marginal zone B cells are widely described in humans, the presence of B-1 cells is more controversial. Here, we review the basic features of the innate B-cell subsets identified in mice and their equivalent in humans, as well as their potential roles in transplantation. We summarize the findings of Cascalho and colleagues on the unexpected protective role of tumor necrosis factor receptor superfamily member 13B in regulating circulating levels of protective natural immunoglobulin M, and the studies by Zorn and colleagues on the potential pathogenic role for polyreactive innate B cells infiltrating allograft explants. Finally, we discuss our studies that took a transcriptomic approach to identify innate B cells infiltrating kidney allografts with antibody-mediated rejection and to demonstrate that local antigens within the allograft together with inflammation may induce a loss of B-cell tolerance.


Assuntos
Linfócitos B , Rejeição de Enxerto , Humanos , Camundongos , Animais , Transplante Homólogo , Inflamação/patologia , Tolerância Imunológica , Anticorpos , Aloenxertos/patologia
2.
J Clin Invest ; 129(8): 3185-3200, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264971

RESUMO

T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.


Assuntos
Linfonodos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Ducto Torácico/imunologia , Animais , Feminino , Humanos , Linfonodos/citologia , Macaca mulatta , Masculino , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Ducto Torácico/citologia
3.
J Exp Med ; 215(6): 1531-1542, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29769249

RESUMO

T follicular regulatory (Tfr) cells are a population of CD4+ T cells that express regulatory T cell markers and have been shown to suppress humoral immunity. However, the precise mechanisms and location of Tfr-mediated suppression in the lymph node (LN) microenvironment are unknown. Using highly multiplexed quantitative imaging and functional assays, we examined the spatial distribution, suppressive function, and preferred interacting partners of Tfr cells in human mesenteric LNs. We find that the majority of Tfr cells express low levels of PD-1 and reside at the border between the T cell zone and B cell follicle, with very few found in the germinal centers (GCs). Although PD-1+ Tfr cells expressed higher levels of CD38, CTLA-4, and GARP than PD-1Neg Tfr cells, both potently suppressed antibody production in vitro. These findings highlight the phenotypic diversity of human Tfr cells and suggest that Tfr-mediated suppression is most efficient at the T-B border and within the follicle, not in the GC.


Assuntos
Linfonodos/imunologia , Linfócitos T Reguladores/imunologia , Formação de Anticorpos/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Centro Germinativo/imunologia , Humanos , Lectinas Tipo C/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Transcrição Gênica
4.
Artigo em Inglês | MEDLINE | ID: mdl-30023016

RESUMO

Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA