Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4642, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170172

RESUMO

The genome of the allotetraploid species Coffea arabica L. was sequenced to assemble independently the two component subgenomes (putatively deriving from C. canephora and C. eugenioides) and to perform a genome-wide analysis of the genetic diversity in cultivated coffee germplasm and in wild populations growing in the center of origin of the species. We assembled a total length of 1.536 Gbp, 444 Mb and 527 Mb of which were assigned to the canephora and eugenioides subgenomes, respectively, and predicted 46,562 gene models, 21,254 and 22,888 of which were assigned to the canephora and to the eugeniodes subgenome, respectively. Through a genome-wide SNP genotyping of 736 C. arabica accessions, we analyzed the genetic diversity in the species and its relationship with geographic distribution and historical records. We observed a weak population structure due to low-frequency derived alleles and highly negative values of Taijma's D, suggesting a recent and severe bottleneck, most likely resulting from a single event of polyploidization, not only for the cultivated germplasm but also for the entire species. This conclusion is strongly supported by forward simulations of mutation accumulation. However, PCA revealed a cline of genetic diversity reflecting a west-to-east geographical distribution from the center of origin in East Africa to the Arabian Peninsula. The extremely low levels of variation observed in the species, as a consequence of the polyploidization event, make the exploitation of diversity within the species for breeding purposes less interesting than in most crop species and stress the need for introgression of new variability from the diploid progenitors.


Assuntos
Coffea/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Tetraploidia , Sequenciamento Completo do Genoma/métodos , Coffea/genética , Costa Rica , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Tamanho do Genoma , Genoma de Planta , Iêmen
2.
J Environ Manage ; 217: 288-296, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614477

RESUMO

This study investigates the conversion of sewage sludge from wastewater treatment plants (WWTP) into biomethane for automotive fuel or grid injection. A prototype plant was monitored in Northern Italy, based on vacuum swing adsorption (VSA) on synthetic zeolite 13×: this biogas upgrading method is similar to pressure swing adsorption (PSA) and commonly used for other kinds of biomass. Measurements of biogas inlet, biomethane outlet and off-gas were performed including CH4, CO2, CO, H2, O2, N2, HCl, HF, NH3, H2S and volatile organic compounds (VOCs). Critical levels were observed in the biogas for of H2S and HCl, whose concentrations were 1570 and 26.8 mg m-3, respectively. On the other hand, the concentration of halogenated VOCs (including tetrachloroethylene and traces of perfluoroalkilated substances, PFAS) and mercaptans were relatively low. A simultaneous and reversible adsorption on 13× zeolite was achieved for H2S and CO2, and carbon filters played a minor role in desulfurisation. The presence of HCl is due to clarifying agents, and its removal is necessary in order to meet the required biomethane characteristics: an additional carbon-supported basic adsorbent was successfully used to remove this contaminant. This study also highlights the interference of CO2 towards HCl if sampling is performed in compliance with the new EU standard for biomethane. High total volatile silicon (TVS) was confirmed in sewage sludge biogas, with a major contribution of siloxane D5: the suitability of this compound as an indicator of total siloxanes is discussed. Results demonstrate that volatile methyl siloxanes (VMS) do not represent a critical issue for the VSA upgrading methodology.


Assuntos
Biocombustíveis , Esgotos , Itália , Siloxanas , Águas Residuárias
3.
Nature ; 551(7680): 327-332, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144448

RESUMO

Junctional epidermolysis bullosa (JEB) is a severe and often lethal genetic disease caused by mutations in genes encoding the basement membrane component laminin-332. Surviving patients with JEB develop chronic wounds to the skin and mucosa, which impair their quality of life and lead to skin cancer. Here we show that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, life-threatening form of JEB. The proviral integration pattern was maintained in vivo and epidermal renewal did not cause any clonal selection. Clonal tracing showed that the human epidermis is sustained not by equipotent progenitors, but by a limited number of long-lived stem cells, detected as holoclones, that can extensively self-renew in vitro and in vivo and produce progenitors that replenish terminally differentiated keratinocytes. This study provides a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies.


Assuntos
Células Epidérmicas , Epidermólise Bolhosa Juncional/terapia , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Transgenes/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Linhagem da Célula , Autorrenovação Celular , Rastreamento de Células , Criança , Células Clonais/citologia , Células Clonais/metabolismo , Derme/citologia , Derme/patologia , Epiderme/patologia , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/metabolismo , Epidermólise Bolhosa Juncional/patologia , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/transplante , Masculino , Provírus/genética , Calinina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA