Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e29272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617925

RESUMO

Background: The molecular diagnostic and therapeutic pathway of Non-Small Cell Lung Cancer (NSCLC) stands as a successful example of precision medicine. The scarcity of material and the increasing number of biomarkers to be tested have prompted the routine application of next-generation-sequencing (NGS) techniques. Despite its undeniable advantages, NGS involves high costs that may impede its broad adoption in laboratories. This study aims to assess the detailed costs linked to the integration of NGS diagnostics in NSCLC to comprehend their financial impact. Materials and methods: The retrospective analysis encompasses 210 cases of early and advanced stages NSCLC, analyzed with NGS and collected at the IRCCS San Gerardo dei Tintori Foundation (Monza, Italy). Molecular analyses were conducted on FFPE samples, with an hotspot panel capable of detecting DNA and RNA variants in 50 clinically relevant genes. The economic analysis employed a full-cost approach, encompassing direct and indirect costs, overheads, VAT (Value Added Tax). Results: We estimate a comprehensive cost for each sample of €1048.32. This cost represents a crucial investment in terms of NSCLC patients survival, despite constituting only around 1% of the expenses incurred in their molecular diagnostic and therapeutic pathway. Conclusions: The cost comparison between NGS test and the notably higher therapeutic costs highlights that the diagnostic phase is not the limiting economic factor. Developing NGS facilities structured in pathology networks may ensure appropriate technical expertise and efficient workflows.

2.
Am J Pathol ; 188(1): 184-195, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037855

RESUMO

In end-stage chronic kidney disease, the option of organ transplantation is limited because of the scarce availability of kidneys. The combination of stem cell research, regenerative medicine, and tissue engineering seems a promising approach to produce new transplantable kidneys. Currently, the possibility to repopulate naturally obtained scaffolds with cells of different sources is advancing. Our aim was to test, for the first time, whether the nephrosphere (NS) cells, composed by renal stem/progenitor-like cells, were able to repopulate different nephron portions of renal extracellular matrix scaffolds obtained after decellularization of human renal tissue slices. Our decellularization protocol enabled us to obtain a completely acellular renal scaffold while maintaining the extracellular matrix structure and composition in terms of collagen IV, laminin, and fibronectin. NS cells, cultured on decellularized renal scaffolds with basal medium, differentiated into proximal and distal tubules as well as endothelium, as highlighted by histology and by the specific expression of epithelial cytokeratin 8.18, proximal tubular CD10, distal tubular cytokeratin 7, and endothelial von Willebrand factor markers. Endothelial medium promoted the differentiation toward the endothelium, whereas epithelial medium promoted the differentiation toward the epithelium. NS cells seem to be a good tool for scaffold repopulation, paving the way for experimental investigations focused on whole-kidney reconstruction.


Assuntos
Diferenciação Celular/fisiologia , Rim/citologia , Alicerces Teciduais , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Masculino , Pessoa de Meia-Idade
3.
J Histochem Cytochem ; 65(8): 431-444, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28692376

RESUMO

Multiplexing, labeling for multiple immunostains in the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labeled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, and scarcity of specialized skills or facilities. We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition, and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulfide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than 30 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Multiplexing on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.


Assuntos
Anticorpos/química , Antígenos/análise , Imuno-Histoquímica/métodos , Animais , Antígenos/imunologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Cabras , Ensaios de Triagem em Larga Escala , Humanos , Rim/química , Camundongos , Placenta/química , Gravidez , Renaturação Proteica , Coelhos , Pele/química , Inclusão do Tecido , Fixação de Tecidos
4.
Proteomics ; 16(11-12): 1759-66, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26749278

RESUMO

Idiopathic glomerulonephritis (GN), such as membranous glomerulonephritis, focal segmental glomerulosclerosis (FSGS), and IgA nephropathy (IgAN), represent the most frequent primary glomerular kidney diseases (GKDs) worldwide. Although the renal biopsy currently remains the gold standard for the routine diagnosis of idiopathic GN, the invasiveness and diagnostic difficulty related with this procedure highlight the strong need for new diagnostic and prognostic biomarkers to be translated into less invasive diagnostic tools. MALDI-MS imaging MALDI-MSI was applied to fresh-frozen bioptic renal tissue from patients with a histological diagnosis of FSGS (n = 6), IgAN, (n = 6) and membranous glomerulonephritis (n = 7), and from controls (n = 4) in order to detect specific molecular signatures of primary glomerulonephritis. MALDI-MSI was able to generate molecular signatures capable to distinguish between normal kidney and pathological GN, with specific signals (m/z 4025, 4048, and 4963) representing potential indicators of chronic kidney disease development. Moreover, specific disease-related signatures (m/z 4025 and 4048 for FSGS, m/z 4963 and 5072 for IgAN) were detected. Of these signals, m/z 4048 was identified as α-1-antitrypsin and was shown to be localized to the podocytes within sclerotic glomeruli by immunohistochemistry. α-1-Antitrypsin could be one of the markers of podocyte stress that is correlated with the development of FSGS due to both an excessive loss and a hypertrophy of podocytes.


Assuntos
Glomerulonefrite por IGA/diagnóstico por imagem , Glomerulosclerose Segmentar e Focal/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , alfa 1-Antitripsina/isolamento & purificação , Adulto , Progressão da Doença , Feminino , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Pessoa de Meia-Idade , Imagem Molecular , Podócitos/metabolismo , Podócitos/patologia , alfa 1-Antitripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA