Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e29272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617925

RESUMO

Background: The molecular diagnostic and therapeutic pathway of Non-Small Cell Lung Cancer (NSCLC) stands as a successful example of precision medicine. The scarcity of material and the increasing number of biomarkers to be tested have prompted the routine application of next-generation-sequencing (NGS) techniques. Despite its undeniable advantages, NGS involves high costs that may impede its broad adoption in laboratories. This study aims to assess the detailed costs linked to the integration of NGS diagnostics in NSCLC to comprehend their financial impact. Materials and methods: The retrospective analysis encompasses 210 cases of early and advanced stages NSCLC, analyzed with NGS and collected at the IRCCS San Gerardo dei Tintori Foundation (Monza, Italy). Molecular analyses were conducted on FFPE samples, with an hotspot panel capable of detecting DNA and RNA variants in 50 clinically relevant genes. The economic analysis employed a full-cost approach, encompassing direct and indirect costs, overheads, VAT (Value Added Tax). Results: We estimate a comprehensive cost for each sample of €1048.32. This cost represents a crucial investment in terms of NSCLC patients survival, despite constituting only around 1% of the expenses incurred in their molecular diagnostic and therapeutic pathway. Conclusions: The cost comparison between NGS test and the notably higher therapeutic costs highlights that the diagnostic phase is not the limiting economic factor. Developing NGS facilities structured in pathology networks may ensure appropriate technical expertise and efficient workflows.

2.
J Histochem Cytochem ; 65(8): 431-444, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28692376

RESUMO

Multiplexing, labeling for multiple immunostains in the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labeled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, and scarcity of specialized skills or facilities. We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition, and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulfide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than 30 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Multiplexing on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.


Assuntos
Anticorpos/química , Antígenos/análise , Imuno-Histoquímica/métodos , Animais , Antígenos/imunologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Cabras , Ensaios de Triagem em Larga Escala , Humanos , Rim/química , Camundongos , Placenta/química , Gravidez , Renaturação Proteica , Coelhos , Pele/química , Inclusão do Tecido , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA