Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0031324, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39475292

RESUMO

Children living with HIV have a higher risk of developing tuberculosis (TB), a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Gamma delta (γδ) T cells in the context of HIV/Mtb coinfection have been understudied in children despite in vitro evidence suggesting γδ T cells assist with Mtb control. We investigated whether boosting a specific subset of γδ T cells, phosphoantigen-reactive Vγ9+Vδ2+ cells, could improve TB outcome using a nonhuman primate model of pediatric HIV/Mtb coinfection. Juvenile Mauritian cynomolgus macaques (MCM), equivalent to 4- to 8-year-old children, were infected intravenously (i.v.) with SIV. After 6 months, MCM were coinfected with a low dose of Mtb and then randomized to receive zoledronate (ZOL), a drug that increases phosphoantigen levels, (n = 5; i.v.) at 3 and 17 days after Mtb accompanied by recombinant human IL-2 (s.c.) for 5 days following each ZOL injection. A similarly coinfected MCM group (n = 5) was injected with saline as a control. Vγ9+Vδ2+ γδ T cell frequencies spiked in the blood, but not airways, of ZOL+IL-2-treated MCM following the first dose, however, were refractory to the second dose. At necropsy 8 weeks after Mtb, ZOL+IL-2 treatment did not reduce pathology or bacterial burden. γδ T cell subset frequencies in granulomas did not differ between treatment groups. These data show that transiently boosting peripheral γδ T cells with ZOL+IL-2 soon after Mtb coinfection of SIV-infected MCM did not improve Mtb host defense.

2.
Immunity ; 57(10): 2380-2398.e6, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39214090

RESUMO

Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Granuloma , Imunomodulação , Mycobacterium tuberculosis , Reinfecção , Animais , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Reinfecção/imunologia , Granuloma/imunologia , Granuloma/microbiologia , Linfócitos T CD8-Positivos/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Humanos , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
3.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091843

RESUMO

Children living with HIV have a higher risk of developing tuberculosis (TB), a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Gamma delta (γδ) T cells in the context of HIV/Mtb coinfection have been understudied in children, despite in vitro evidence suggesting γδ T cells assist with Mtb control. We investigated whether boosting a specific subset of γδ T cells, phosphoantigen-reactive Vγ9+Vδ2+ cells, could improve TB outcome using a nonhuman primate model of pediatric HIV/Mtb coinfection. Juvenile Mauritian cynomolgus macaques (MCM), equivalent to 4-8-year-old children, were infected intravenously (i.v.) with SIV. After 6 months, MCM were coinfected with a low dose of Mtb and then randomized to receive zoledronate (ZOL), a drug that increases phosphoantigen levels, (n=5; i.v.) at 3- and 17- days after Mtb accompanied by recombinant human IL-2 (s.c.) for 5 days following each ZOL injection. A similarly coinfected MCM group (n=5) was injected with saline as a control. Vγ9+Vδ2+ γδ T cell frequencies spiked in the blood, but not airways, of ZOL+IL-2-treated MCM following the first dose, however, were refractory to the second dose. At necropsy eight weeks after Mtb, ZOL+IL-2 treatment did not reduce pathology or bacterial burden. γδ T cell subset frequencies in granulomas did not differ between treatment groups. These data show that transiently boosting peripheral γδ T cells with ZOL+IL-2 soon after Mtb coinfection of SIV-infected MCM did not improve Mtb host defense.

4.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37843832

RESUMO

The functional role of CD8+ lymphocytes in tuberculosis remains poorly understood. We depleted innate and/or adaptive CD8+ lymphocytes in macaques and showed that loss of all CD8α+ cells (using anti-CD8α antibody) significantly impaired early control of Mycobacterium tuberculosis (Mtb) infection, leading to increased granulomas, lung inflammation, and bacterial burden. Analysis of barcoded Mtb from infected macaques demonstrated that depletion of all CD8+ lymphocytes allowed increased establishment of Mtb in lungs and dissemination within lungs and to lymph nodes, while depletion of only adaptive CD8+ T cells (with anti-CD8ß antibody) worsened bacterial control in lymph nodes. Flow cytometry and single-cell RNA sequencing revealed polyfunctional cytotoxic CD8+ lymphocytes in control granulomas, while CD8-depleted animals were unexpectedly enriched in CD4 and γδ T cells adopting incomplete cytotoxic signatures. Ligand-receptor analyses identified IL-15 signaling in granulomas as a driver of cytotoxic T cells. These data support that CD8+ lymphocytes are required for early protection against Mtb and suggest polyfunctional cytotoxic responses as a vaccine target.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Macaca , Tuberculose/microbiologia , Linfócitos T CD8-Positivos , Granuloma , Linfócitos T CD4-Positivos
5.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319311

RESUMO

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Antituberculosos , Moxifloxacina/uso terapêutico , Tuberculose/tratamento farmacológico
6.
mBio ; 14(3): e0047723, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039646

RESUMO

Despite the extensive research on CD4 T cells within the context of Mycobacterium tuberculosis (Mtb) infections, few studies have focused on identifying and investigating the profile of Mtb-specific T cells within lung granulomas. To facilitate the identification of Mtb-specific CD4 T cells, we identified immunodominant epitopes for two Mtb proteins, namely, Rv1196 and Rv0125, using a Mauritian cynomolgus macaque model of Mtb infection, thereby providing data for the synthesis of MHC class II tetramers. Using tetramers, we identified Mtb-specific cells within different immune compartments, postinfection. We found that granulomas were enriched sites for Mtb-specific cells and that tetramer+ cells had increased frequencies of the activation marker CD69 as well as the transcription factors T-bet and RORγT, compared to tetramer negative cells within the same sample. Our data revealed that while the frequency of Rv1196 tetramer+ cells was positively correlated with the granuloma bacterial burden, the frequency of RORγT or T-bet within tetramer+ cells was inversely correlated with the granuloma bacterial burden, thereby highlighting the importance of having activated, polarized, Mtb-specific cells for the control of Mtb in lung granulomas. IMPORTANCE Tuberculosis, caused by the bacterial pathogen Mycobacterium tuberculosis, kills 1.5 million people each year, despite the existence of effective drugs and a vaccine that is given to infants in most countries. Clearly, we need better vaccines against this disease. However, our understanding of the immune responses that are necessary to prevent tuberculosis is incomplete. This study seeks to understand the functions of T cells that are specific for M. tuberculosis at the site of the disease in the lungs. For this, we developed specialized tools called MHC class II tetramers to identify those T cells that can recognize M. tuberculosis and applied the tools to the study of this infection in nonhuman primate models that mimic human tuberculosis. We demonstrate that M. tuberculosis-specific T cells in lung lesions are associated with control of the bacteria only when those T cells are expressing certain functions, thereby highlighting the importance of combining the identification of specific T cells with functional analyses. Thus, we surmise that these functions of specific T cells are critical to the control of infection and should be considered as a part of the development of vaccines against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Mycobacterium tuberculosis/fisiologia , Linfócitos T CD4-Positivos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tuberculose/microbiologia , Granuloma , Macaca fascicularis , Fatores de Transcrição/metabolismo
7.
Infect Immun ; 91(5): e0055822, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37039653

RESUMO

Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.


Assuntos
Antirretrovirais , Modelos Animais de Doenças , Macaca , Mycobacterium tuberculosis , Vírus da Imunodeficiência Símia , Tuberculose , Humanos , Pré-Escolar , Criança , Animais , Tuberculose/complicações , Tuberculose/imunologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Antirretrovirais/administração & dosagem , Mycobacterium tuberculosis/fisiologia
8.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187598

RESUMO

Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.

9.
Microbiol Spectr ; 10(3): e0172421, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467372

RESUMO

Individuals co-infected with HIV and Mycobacterium tuberculosis (Mtb) are more likely to develop severe tuberculosis (TB) disease than HIV-naive individuals. To understand how a chronic pre-existing Simian immunodeficiency virus (SIV) infection impairs the early immune response to Mtb, we used the Mauritian cynomolgus macaque (MCM) model of SIV/Mtb co-infection. We examined the relationship between peripheral viral control and Mtb burden, Mtb dissemination, and T cell function between SIV+ spontaneous controllers, SIV+ non-controllers, and SIV-naive MCM who were challenged with a barcoded Mtb Erdman strain 6 months post-SIV infection and necropsied 6 weeks post-Mtb infection. Mycobacterial burden was highest in the SIV+ non-controllers in all assessed tissues. In lung granulomas, the frequency of TNF-α-producing CD4+ T cells was reduced in all SIV+ MCM, but IFNγ-producing CD4+ T cells were only lower in the SIV+ non-controllers. Further, while all SIV+ MCM had more PD1+ and TIGIT+ T cells in the lung granulomas relative to SIV-naive MCM, SIV+ controllers exhibited the highest frequency of cells expressing these markers. To measure the effect of SIV infection on within-host bacterial dissemination, we sequenced the molecular barcodes of Mtb present in each tissue and characterized the Mtb population complexity. While Mtb population complexity was not associated with SIV infection group, lymph nodes had increased complexity when compared with lung granulomas across all groups. These results provide evidence that SIV+ animals, independent of viral control, exhibit a dysregulated T cell immune response and enhanced dissemination of Mtb, likely contributing to the poor TB disease course across all SIV/Mtb co-infected animals. IMPORTANCE HIV and TB remain significant global health issues, despite the availability of treatments. Individuals with HIV, including those who are virally suppressed, are at an increased risk to develop and succumb to severe TB disease when compared with HIV-naive individuals. Our study aims to understand the relationship between the extent of SIV replication, mycobacterial growth, and T cell function in the tissues of co-infected Mauritian cynomolgus macaques during the first 6 weeks of Mtb infection. Here we demonstrate that increased viral replication is associated with increased bacterial burden in the tissues and impaired T cell responses, and that the immunological damage attributed to virus infection is not fully eliminated when animals spontaneously control virus replication.


Assuntos
Coinfecção , Infecções por HIV , Mycobacterium tuberculosis , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Tuberculose , Animais , Linfócitos T CD4-Positivos , Coinfecção/microbiologia , Granuloma , Infecções por HIV/complicações , Macaca fascicularis , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Linfócitos T
10.
Immunity ; 55(5): 827-846.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483355

RESUMO

Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.


Assuntos
Mycobacterium tuberculosis , Fibrose Pulmonar , Tuberculose , Animais , Ecossistema , Granuloma , Pulmão , Macaca fascicularis , Fibrose Pulmonar/patologia
11.
ACS Infect Dis ; 7(8): 2264-2276, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34255474

RESUMO

Neutrophilic inflammation correlates with severe tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb). Granulomas are lesions that form in TB, and a PET probe for following neutrophil recruitment to granulomas could predict disease progression. We tested the formyl peptide receptor 1 (FPR1)-targeting peptide FLFLF in Mtb-infected macaques. Preliminary studies in mice demonstrated specificity for neutrophils. In macaques, 64Cu-FLFLF was retained in lung granulomas and analysis of lung granulomas identified positive correlations between 64Cu-FLFLF and neutrophil and macrophage numbers (R2 = 0.8681 and 0.7643, respectively), and weaker correlations for T cells and B cells (R2 = 0.5744 and 0.5908, respectively), suggesting that multiple cell types drive 64Cu-FLFLF avidity. By PET/CT imaging, we found that granulomas retained 64Cu-FLFLF but with less avidity than the glucose analog 18F-FDG. These studies suggest that neutrophil-specific probes have potential PET/CT applications in TB, but important issues need to be addressed before they can be used in nonhuman primates and humans.


Assuntos
Neutrófilos , Receptores de Formil Peptídeo , Animais , Granuloma/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Macaca fascicularis , Macrófagos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
12.
J Immunol ; 207(1): 175-188, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145063

RESUMO

Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.


Assuntos
Granuloma/imunologia , Mycobacterium tuberculosis/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Biomarcadores/análise , Linfócitos T CD8-Positivos/imunologia , Macaca , Vírus da Imunodeficiência Símia/imunologia
13.
PLoS Pathog ; 16(5): e1008585, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433713

RESUMO

Mucosal-associated invariant T (MAIT) cells can recognize and respond to some bacterially infected cells. Several in vitro and in vivo models of Mycobacterium tuberculosis (Mtb) infection suggest that MAIT cells can contribute to control of Mtb, but these studies are often cross-sectional and use peripheral blood cells. Whether MAIT cells are recruited to Mtb-affected granulomas and lymph nodes (LNs) during early Mtb infection and what purpose they might serve there is less well understood. Furthermore, whether HIV/SIV infection impairs MAIT cell frequency or function at the sites of Mtb replication has not been determined. Using Mauritian cynomolgus macaques (MCM), we phenotyped MAIT cells in the peripheral blood and bronchoalveolar lavage (BAL) before and during infection with SIVmac239. To test the hypothesis that SIV co-infection impairs MAIT cell frequency and function within granulomas, SIV+ and -naïve MCM were infected with a low dose of Mtb Erdman, and necropsied at 6 weeks post Mtb-challenge. MAIT cell frequency and function were examined within the peripheral blood, BAL, and Mtb-affected lymph nodes (LN) and granulomas. MAIT cells did not express markers indicative of T cell activation in response to Mtb in vivo within granulomas in animals infected with Mtb alone. SIV and Mtb co-infection led to increased expression of the activation/exhaustion markers PD-1 and TIGIT, and decreased ability to secrete TNFα when compared to SIV-naïve MCM. Our study provides evidence that SIV infection does not prohibit the recruitment of MAIT cells to sites of Mtb infection, but does functionally impair those MAIT cells. Their impaired function could have impacts, either direct or indirect, on the long-term containment of TB disease.


Assuntos
Coinfecção/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Mycobacterium tuberculosis/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Tuberculose Pulmonar/imunologia , Animais , Coinfecção/patologia , Granuloma/imunologia , Granuloma/patologia , Linfonodos/imunologia , Linfonodos/patologia , Macaca fascicularis , Células T Invariantes Associadas à Mucosa/patologia , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Tuberculose Pulmonar/patologia
14.
Nature ; 577(7788): 95-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894150

RESUMO

Mycobacterium tuberculosis (Mtb) is the leading cause of death from infection worldwide1. The only available vaccine, BCG (Bacillus Calmette-Guérin), is given intradermally and has variable efficacy against pulmonary tuberculosis, the major cause of mortality and disease transmission1,2. Here we show that intravenous administration of BCG profoundly alters the protective outcome of Mtb challenge in non-human primates (Macaca mulatta). Compared with intradermal or aerosol delivery, intravenous immunization induced substantially more antigen-responsive CD4 and CD8 T cell responses in blood, spleen, bronchoalveolar lavage and lung lymph nodes. Moreover, intravenous immunization induced a high frequency of antigen-responsive T cells across all lung parenchymal tissues. Six months after BCG vaccination, macaques were challenged with virulent Mtb. Notably, nine out of ten macaques that received intravenous BCG vaccination were highly protected, with six macaques showing no detectable levels of infection, as determined by positron emission tomography-computed tomography imaging, mycobacterial growth, pathology and granuloma formation. The finding that intravenous BCG prevents or substantially limits Mtb infection in highly susceptible rhesus macaques has important implications for vaccine delivery and clinical development, and provides a model for defining immune correlates and mechanisms of vaccine-elicited protection against tuberculosis.


Assuntos
Administração Intravenosa , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Tuberculose/prevenção & controle , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Macaca mulatta , Tuberculose/imunologia , Vacinação/normas
15.
NPJ Vaccines ; 4: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149352

RESUMO

Tuberculosis (TB) is the leading cause of death from infection worldwide. The only approved vaccine, BCG, has variable protective efficacy against pulmonary TB, the transmissible form of the disease. Therefore, improving this efficacy is an urgent priority. This study assessed whether heterologous prime-boost vaccine regimens in which BCG priming is boosted with either (i) protein and adjuvant (M72 plus AS01E or H56 plus CAF01) delivered intramuscularly (IM), or (ii) replication-defective recombinant adenovirus serotype 5 (Ad5) expressing various Mycobacterium tuberculosis (Mtb) antigens (Ad5(TB): M72, ESAT-6/Ag85b, or ESAT-6/Rv1733/Rv2626/RpfD) administered simultaneously by IM and aerosol (AE) routes, could enhance blood- and lung-localized T-cell immunity and improve protection in a nonhuman primate (NHP) model of TB infection. Ad5(TB) vaccines administered by AE/IM routes following BCG priming elicited ~10-30% antigen-specific CD4 and CD8 T-cell multifunctional cytokine responses in bronchoalveolar lavage (BAL) but did not provide additional protection compared to BCG alone. Moreover, AE administration of an Ad5(empty) control vector after BCG priming appeared to diminish protection induced by BCG. Boosting BCG by IM immunization of M72/AS01E or H56:CAF01 elicited ~0.1-0.3% antigen-specific CD4 cytokine responses in blood with only a transient increase of ~0.5-1% in BAL; these vaccine regimens also failed to enhance BCG-induced protection. Taken together, this study shows that boosting BCG with protein/adjuvant or Ad-based vaccines using these antigens, by IM or IM/AE routes, respectively, do not enhance protection against primary infection compared with BCG alone, in the highly susceptible rhesus macaque model of tuberculosis.

16.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30224552

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death among human immunodeficiency virus (HIV)-positive patients. The precise mechanisms by which HIV impairs host resistance to a subsequent M. tuberculosis infection are unknown. We modeled this coinfection in Mauritian cynomolgus macaques (MCM) using simian immunodeficiency virus (SIV) as an HIV surrogate. We infected seven MCM with SIVmac239 intrarectally and 6 months later coinfected them via bronchoscope with ∼10 CFU of M. tuberculosis Another eight MCM were infected with M. tuberculosis alone. TB progression was monitored by clinical parameters, by culturing bacilli in gastric and bronchoalveolar lavages, and by serial [18F]fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. The eight MCM infected with M. tuberculosis alone displayed dichotomous susceptibility to TB, with four animals reaching humane endpoint within 13 weeks and four animals surviving >19 weeks after M. tuberculosis infection. In stark contrast, all seven SIV+ animals exhibited rapidly progressive TB following coinfection and all reached humane endpoint by 13 weeks. Serial PET/CT imaging confirmed dichotomous outcomes in MCM infected with M. tuberculosis alone and marked susceptibility to TB in all SIV+ MCM. Notably, imaging revealed a significant increase in TB granulomas between 4 and 8 weeks after M. tuberculosis infection in SIV+ but not in SIV-naive MCM and implies that SIV impairs the ability of animals to contain M. tuberculosis dissemination. At necropsy, animals with preexisting SIV infection had more overall pathology, increased bacterial loads, and a trend towards more extrapulmonary disease than animals infected with M. tuberculosis alone. We thus developed a tractable MCM model in which to study SIV-M. tuberculosis coinfection and demonstrate that preexisting SIV dramatically diminishes the ability to control M. tuberculosis coinfection.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Tuberculose/imunologia , Tuberculose/virologia , Animais , Carga Bacteriana , Linfócitos T CD4-Positivos/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Granuloma/imunologia , Granuloma/microbiologia , Macaca fascicularis , Mycobacterium tuberculosis , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Vírus da Imunodeficiência Símia , Tuberculose/veterinária
17.
J Vis Exp ; (127)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28930979

RESUMO

Mycobacterium tuberculosis remains the number one infectious agent in the world today. With the emergence of antibiotic resistant strains, new clinically relevant methods are needed that evaluate the disease process and screen for potential antibiotic and vaccine treatments. Positron Emission Tomography/Computed Tomography (PET/CT) has been established as a valuable tool for studying a number of afflictions such as cancer, Alzheimer's disease, and inflammation/infection. Outlined here are a number of strategies that have been employed to evaluate PET/CT images in cynomolgus macaques that are infected intrabronchially with low doses of M. tuberculosis. Through evaluation of lesion size on CT and uptake of 18F-fluorodeoxyglucose (FDG) in lesions and lymph nodes in PET images, these described methods show that PET/CT imaging can predict future development of active versus latent disease and the propensity for reactivation from a latent state of infection. Additionally, by analyzing the overall level of lung inflammation, these methods determine antibiotic efficacy of drugs against M. tuberculosis in the most clinically relevant existing animal model. These image analysis methods are some of the most powerful tools in the arsenal against this disease as not only can they evaluate a number of characteristics of infection and drug treatment, but they are also directly translatable to a clinical setting for use in human studies.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Tuberculose/diagnóstico por imagem , Animais , Macaca , Mycobacterium tuberculosis/isolamento & purificação , Primatas , Tuberculose/tratamento farmacológico , Tuberculose/patologia
18.
J Immunol ; 199(2): 806-815, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28592427

RESUMO

Positron emission tomography and computed tomography imaging (PET/CT) is an increasingly valuable tool for diagnosing tuberculosis (TB). The glucose analog [18F]fluoro-2-deoxy-2-d-glucose ([18F]-FDG) is commonly used in PET/CT that is retained by metabolically active inflammatory cells in granulomas, but lacks specificity for particular cell types. A PET probe that could identify recruitment and differentiation of different cell populations in granulomas would be a useful research tool and could improve TB diagnosis and treatment. We used the Mycobacterium-antigen murine inflammation model and macaques with TB to identify [64Cu]-labeled CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A), a high affinity peptidomimetic ligand for very late Ag-4 (VLA-4; also called integrin α4ß1) binding cells in granulomas, and compared [64Cu]-LLP2A with [18F]-FDG over the course of infection. We found that [64Cu]-LLP2A retention was driven by macrophages and T cells, with less contribution from neutrophils and B cells. In macaques, granulomas had higher [64Cu]-LLP2A uptake than uninfected tissues, and immunohistochemical analysis of granulomas with known [64Cu]-LLP2A uptake identified significant correlations between LLP2A signal and macrophage and T cell numbers. The same cells coexpressed integrin α4 and ß1, further supporting that macrophages and T cells drive [64Cu]-LLP2A avidity in granulomas. Over the course of infection, granulomas and thoracic lymph nodes experienced dynamic changes in affinity for both probes, suggesting metabolic changes and cell differentiation or recruitment occurs throughout granuloma development. These results indicate [64Cu]-LLP2A is a PET probe for VLA-4, which when used in conjunction with [18F]-FDG, may be a useful tool for understanding granuloma biology in TB.


Assuntos
Glucose/metabolismo , Granuloma/imunologia , Integrina alfa4beta1/genética , Tuberculose/diagnóstico por imagem , Tuberculose/imunologia , Animais , Diferenciação Celular , Movimento Celular , Granuloma/diagnóstico por imagem , Granuloma/metabolismo , Granuloma/fisiopatologia , Compostos Heterocíclicos com 2 Anéis/química , Integrina alfa4beta1/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Macaca , Macrófagos/imunologia , Neutrófilos/imunologia , Organofosfonatos/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Linfócitos T/imunologia , Tuberculose/diagnóstico , Tuberculose/microbiologia
19.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115506

RESUMO

Nonhuman primates can be used to study host immune responses to Mycobacterium tuberculosis Mauritian cynomolgus macaques (MCMs) are a unique group of animals that have limited major histocompatibility complex (MHC) genetic diversity, such that MHC-identical animals can be infected with M. tuberculosis Two MCMs homozygous for the relatively common M1 MHC haplotype were bronchoscopically infected with 41 CFU of the M. tuberculosis Erdman strain. Four other MCMs, which had at least one copy of the M1 MHC haplotype, were infected with a lower dose of 3 CFU M. tuberculosis All animals mounted similar T-cell responses to CFP-10 and ESAT-6. Two epitopes in CFP-10 were characterized, and the MHC class II alleles restricting them were determined. A third epitope in CFP-10 was identified but exhibited promiscuous restriction. The CFP-10 and ESAT-6 antigenic regions targeted by T cells in MCMs were comparable to those seen in cases of human M. tuberculosis infection. Our data lay the foundation for generating tetrameric molecules to study epitope-specific CD4 T cells in M. tuberculosis-infected MCMs, which may guide future testing of tuberculosis vaccines in nonhuman primates.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Epitopos de Linfócito T/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/biossíntese , Macaca fascicularis , Peptídeos/química , Peptídeos/imunologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Linfócitos T/metabolismo , Tomografia Computadorizada por Raios X , Tuberculose/diagnóstico , Tuberculose/metabolismo , Tuberculose/microbiologia
20.
J Immunol ; 197(5): 1852-63, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27439514

RESUMO

The Toll-like and IL-1 family receptors play critical roles in innate and adaptive immunity against intracellular pathogens. Although previous data demonstrated the importance of TLRs and IL-1R signaling events for the establishment of an effective immune response to mycobacteria, the possible function of the adaptor molecule IL-1R-associated kinase (IRAK)-4 against this pathogen has not been addressed. In this study, we determined the role of IRAK-4 in signaling pathways responsible for controlling mycobacterial infections. This kinase is important for the production of IL-12 and TNF-α by macrophages and dendritic cells exposed to mycobacteria. Moreover, Mycobacterium bovis-infected IRAK-4-knockout macrophages displayed impaired MAPK and NF-κB activation. IL-1ß secretion and caspase-1 activation were also dependent on IRAK-4 signaling. Mice lacking IRAK-4 showed increased M. bovis burden in spleen, liver, and lungs and smaller liver granulomas during 60 d of infection compared with wild-type mice. Furthermore, 80% of IRAK-4(-/-) mice succumbed to virulent M. tuberculosis within 100 d following low-dose infection. This increased susceptibility to mycobacteria correlated with reduced IFN-γ/TNF-α recall responses by splenocytes, as well as fewer IL-12p70-producing APCs. Additionally, we observed that IRAK-4 is also important for the production of IFN-γ by CD4(+) T cells from infected mice. Finally, THP-1 cells treated with an IRAK-4 inhibitor and exposed to M. bovis showed reduced TNF-α and IL-12, suggesting that the results found in mice can be extended to humans. In summary, these data demonstrate that IRAK-4 is essential for innate and adaptive immunity and necessary for efficient control of mycobacterial infections.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/deficiência , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Células Th1/patologia , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Carga Bacteriana , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Humanos , Imunidade Inata , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Fígado/microbiologia , Fígado/patologia , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , NF-kappa B/metabolismo , Transdução de Sinais , Baço/microbiologia , Células Th1/imunologia , Tuberculina/imunologia , Tuberculose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA