Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958700

RESUMO

Ovarian cancer (OC) is the most lethal of all gynecological cancers. Due to vague symptoms, OC is mostly detected at advanced stages, with a 5-year survival rate (SR) of only 30%; diagnosis at stage I increases the 5-year SR to 90%, suggesting that early diagnosis is essential to cure OC. Currently, the clinical need for an early, reliable diagnostic test for OC screening remains unmet; indeed, screening is not even recommended for healthy women with no familial history of OC for fear of post-screening adverse events. Salivary diagnostics is considered a major resource for diagnostics of the future. In this work, we searched for OC biomarkers (BMs) by comparing saliva samples of patients with various stages of OC, breast cancer (BC) patients, and healthy subjects using an unbiased, high-throughput proteomics approach. We analyzed the results using both logistic regression (LR) and machine learning (ML) for pattern analysis and variable selection to highlight molecular signatures for OC and BC diagnosis and possibly re-classification. Here, we show that saliva is an informative test fluid for an unbiased proteomic search of candidate BMs for identifying OC patients. Although we were not able to fully exploit the potential of ML methods due to the small sample size of our study, LR and ML provided patterns of candidate BMs that are now available for further validation analysis in the relevant population and for biochemical identification.


Assuntos
Neoplasias Ovarianas , Saliva , Humanos , Feminino , Proteômica/métodos , Modelos Logísticos , Neoplasias Ovarianas/diagnóstico , Biomarcadores Tumorais , Aprendizado de Máquina
2.
Biomedicines ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979630

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs with the crucial regulatory functions of gene expression at post-transcriptional level, detectable in cell and tissue extracts, and body fluids. For their stability in body fluids and accessibility to sampling, circulating miRNAs and changes of their concentration may represent suitable disease biomarkers, with diagnostic and prognostic relevance. A solid literature now describes the profiling of circulating miRNA signatures for several tumor types. Among body fluids, saliva accurately reflects systemic pathophysiological conditions, representing a promising diagnostic resource for the future of low-cost screening procedures for systemic diseases, including cancer. Here, we provide a review of literature about miRNAs as potential disease biomarkers with regard to ovarian cancer (OC), with an excursus about liquid biopsies, and saliva in particular. We also report on salivary miRNAs as biomarkers in oncological conditions other than OC, as well as on OC biomarkers other than miRNAs. While the clinical need for an effective tool for OC screening remains unmet, it would be advisable to combine within a single diagnostic platform, the tools for detecting patterns of both protein and miRNA biomarkers to provide the screening robustness that single molecular species separately were not able to provide so far.

3.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946600

RESUMO

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Assuntos
Anilidas , Benzamidas , Inibidores Enzimáticos , Proteínas dos Microfilamentos , Oxirredutases , Bibliotecas de Moléculas Pequenas , Humanos , Anilidas/química , Anilidas/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Estrutura Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Cell Mol Life Sci ; 79(1): 28, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936031

RESUMO

Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.


Assuntos
Autofagia , Capilares/citologia , Radiação Cósmica , Células Endoteliais/efeitos da radiação , Transdução de Sinais , Ausência de Peso , Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular , Cromossomos Humanos/metabolismo , Citoesqueleto/metabolismo , Dano ao DNA , Fluorescência , Regulação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Mecanotransdução Celular , Modelos Biológicos , Transdução de Sinais/efeitos da radiação , Voo Espacial , Estresse Fisiológico , Homeostase do Telômero , Transcriptoma/genética
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2111-2124, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004710

RESUMO

The capacity of inducing angiogenesis is a recognized hallmark of cancer cells. The cancer microenvironment, characterized by hypoxia and inflammatory signals, promotes proliferation, migration and activation of quiescent endothelial cells (EC) from surrounding vascular network. Current anti-angiogenic drugs present side effects, temporary efficacy, and issues of primary resistance, thereby calling for the identification of new therapeutic targets. MICALs are a unique family of redox enzymes that destabilize F-actin in cytoskeletal dynamics. MICAL2 mediates Semaphorin3A-NRP2 response to VEGFR1 in rat ECs. MICAL2 also enters the p130Cas interactome in response to VEGF in HUVEC. Previously, we showed that MICAL2 is overexpressed in metastatic cancer. A small-molecule inhibitor of MICAL2 exists (CCG-1423). Here we report that 1) MICAL2 is expressed in neo-angiogenic ECs in human solid tumors (kidney and breast carcinoma, glioblastoma and cardiac myxoma, n = 67, were analyzed with immunohistochemistry) and in animal models of ischemia/inflammation neo-angiogenesis, but not in normal capillary bed; 2) MICAL2 protein pharmacological inhibition (CCG-1423) or gene KD reduce EC viability and functional performance; 3) MICAL2 KD disables ECs response to VEGF in vitro. Whole-genome gene expression profiling reveals MICAL2 involvement in angiogenesis and vascular development pathways. Based on these results, we propose that MICAL2 expression in ECs participates to inflammation-induced neo-angiogenesis and that MICAL2 inhibition should be tested in cancer- and noncancer-associated neo-angiogenesis, where chronic inflammation represents a relevant pathophysiological mechanism.


Assuntos
Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anilidas/farmacologia , Animais , Benzamidas/farmacologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Masculino , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Neovascularização Fisiológica , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar
6.
Am J Physiol Heart Circ Physiol ; 304(7): H927-34, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376828

RESUMO

We have previously reported that bradykinin relaxes the fetal ductus arteriosus via endothelium-derived hyperpolarizing factor (EDHF) when other naturally occurring relaxants (prostaglandin E2, nitric oxide, and carbon monoxide) are suppressed, but the identity of the agent could not be ascertained. Here, we have examined in the mouse whether hydrogen sulfide (H2S) is a relaxant of the ductus and, if so, whether it may also function as an EDHF. We found in the vessel transcripts for the H2S synthetic enzymes, cystathionine-γ-lyase (CSE) and cystathionine-ß-synthase (CBS), and the presence of these enzymes was confirmed by immunofluorescence microscopy. CSE and CBS were distributed across the vessel wall with the former prevailing in the intimal layer. Both enzymes occurred within the endoplasmic reticulum of endothelial and muscle cells, whereas only CSE was located also in the plasma membrane. The isolated ductus contracted to inhibitors of CSE (d,l-propargylglycine, PPG) and CBS (amino-oxyacetic acid), and PPG contraction was attenuated by removal of the endothelium. EDHF-mediated bradykinin relaxation was curtailed by both PPG and amino-oxyacetic acid, whereas the relaxation to sodium nitroprusside was not affected by either treatment. The H2S donor sodium hydrogen sulfide (NaHS) was also a potent, concentration-dependent relaxant. We conclude that the ductus is endowed with a H2S system exerting a tonic relaxation. In addition, H2S, possibly via an overriding CSE source, qualifies as an EDHF. These findings introduce a novel vasoregulatory mechanism into the ductus, with implications for antenatal patency of the vessel and its transitional adjustments at birth.


Assuntos
Canal Arterial/metabolismo , Fatores Relaxantes Dependentes do Endotélio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Vasodilatação , Alcinos/farmacologia , Ácido Amino-Oxiacético/farmacologia , Animais , Bradicinina/farmacologia , Membrana Celular/metabolismo , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Canal Arterial/enzimologia , Canal Arterial/fisiologia , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Nitroprussiato/farmacologia , RNA Mensageiro/biossíntese , Transcrição Gênica , Túnica Íntima/citologia , Túnica Íntima/enzimologia , Túnica Íntima/metabolismo
7.
Plant Physiol Biochem ; 43(1): 45-54, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15763665

RESUMO

In this work, we first investigated if the bread wheat (Triticum aestivum L.) cv. Albimonte can be defined as "shoot cadmium excluder"--by comparing the cadmium (Cd) content in leaves and roots and by calculating the shoot-to-root Cd concentration ratio. Furthermore, we evaluated if the exposure to Cd excess could generate oxidative stress in leaves and roots of this cv., in terms of hydrogen peroxide (H(2)O(2)) accumulation, NAD(P)H oxidation rate, and variations in reduced glutathione (GSH) content and peroxidase (POD, EC 1.11.1.7) activity. Finally, we surveyed possible quali- quantitative differences in thiol-peptide compound pattern between roots and leaves, in order to verify whether phytochelatins (PCs) and related thiol-peptides could contribute in limiting the Cd-induced oxidative stress. Unambiguous characterisation of PCs and related forms present in the root samples was obtained by electrospray ionisation mass spectrometry (ESI-MS) and ESI-tandem MS (ESI-MS/MS). Our results indicate that in leaves the stress generated by the low accumulation of Cd (due to a moderate translocation in planta) seems to be counteracted by the antioxidant response and by the PC biosynthesis. On the contrary, in roots, in spite of the elevated presence of PCs and related thiol-peptide-compounds, the excess of Cd causes a decline in the antioxidant protection of the organ, with the consequent generation of considerable amounts of H(2)O(2), a direct agent of oxidative stress.


Assuntos
Cádmio/toxicidade , Estresse Oxidativo/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Triticum/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Espectrometria de Massas , Metaloproteínas/metabolismo , NADP/metabolismo , Peroxidase/metabolismo , Fitoquelatinas , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Triticum/efeitos dos fármacos
8.
Plant Mol Biol ; 53(5): 715-31, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15010609

RESUMO

Recent results in animals and plants have shown a strong link between DNA methylation, chromatin structure and epigenetic control. In plants DNA methylation affects both symmetric and asymmetric cytosines by means of different DNA-methyltransferases. In vertebrates these modifications are interpreted by a group of proteins (methylated DNA-binding domain proteins, MBDs) able to specifically bind methylated CpG. In plants several genes sharing structural homology to mammalian MBD have been identified in Arabidopsis and maize, but their characterization is still to be completed. Here we present the characterization of six different MBDs from Arabidopsis. As judged by semi-quantitative RT-PCR, their expression proved to be differentially modulated in different organs. All the corresponding polypeptides, expressed in Escherichia coli as His-tagged recombinant proteins, have been functionally tested on gel shift experiments but only two of them (namely MBD5, 6) were able to specifically bind methylated CpG oligonucleotides. A third protein, AtMBD11, showed a strong affinity for DNA independently from the level of methylation. Moreover we were able to differentiate MBD5 and 6, despite their high homology, for their ability to recognize methylated asymmetrical sites. The binding specificity of these three AtMBD proteins was tested not only on arbitrarily chosen probes but also on the Arabidopsis E2F recognition sequence containing a single CpG site. Protoplasts transient expression experiments of GFP-fusion proteins showed for AtMBD5 and AtMBD6 a heterochromatic localization which was affected by 5-azacytidine treatment. These data demonstrate that AtMBD5 and AtMBD6 bind methylated DNA in vitro and in vivo with different specificity and might therefore have different roles in methylation-mediated transcriptional silencing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Proteínas Nucleares/genética , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA